Advertisements
Advertisements
Question
If the zeros of the polynomial f(x) = ax3 + 3bx2 + 3cx + d are in A.P., prove that 2b3 − 3abc + a2d = 0.
Solution
Let a - d, a and a + d be the zeros of the polynomial f(x). Then,
Sum of the zeroes `=("coefficient of "x^2)/("coefficient of "x^3)`
`a-d+a+a+d=(-3b)/a`
`3a=(-3b)/a`
`a=(-3b)/axx1/3`
`a=(-b)/a`
Since a is a zero of the polynomial f(x).
Therefore,
f(x) = ax3 + 3bx2 + 3cx + d
f(a) = 0
f(a) = aa3 + 3ba2 + 3ca + d
aa3 + 3ba2 + 3ca + d = 0
`a((-b)/a)^3+3bxx((-b)/a)^2+3cxx((-b)/a)+d=0`
`axx(-b)/axx(-b)/axx(-b)/a+3xxbxx(-b)/axx(-b)/a+3xxcxx(-b)/a+d=0`
`(-b^3)/a^2+(3b^3)/a^2-(3cb)/a+d=0`
`(-b^3+3b^3-3abc+a^2d)/a^2=0`
2b3 − 3abc + a2d = 0 xa2
2b3 − 3abc + a2d = 0
Hence, it is proved that 2b3 − 3abc + a2d = 0
APPEARS IN
RELATED QUESTIONS
If α and β are the zeroes of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/(aalpha+b)+1/(abeta+b)`.
If the zeros of the polynomial f(x) = 2x3 − 15x2 + 37x − 30 are in A.P., find them.
Find the zeroes of the quadratic polynomial` (x^2 ˗ 5)` and verify the relation between the zeroes and the coefficients.
Find the quadratic polynomial, sum of whose zeroes is `sqrt2` and their product is `(1/3)`.
If 2 and -2 are two zeroes of the polynomial `(x^4 + x^3 – 34x^2 – 4x + 120)`, find all the zeroes of the given polynomial.
If two zeros x3 + x2 − 5x − 5 are \[\sqrt{5}\ \text{and} - \sqrt{5}\], then its third zero is
The polynomial which when divided by −x2 + x − 1 gives a quotient x − 2 and remainder 3, is
If 2 and `1/2` are the zeros of px2 + 5x + r, then ______.
Basketball and soccer are played with a spherical ball. Even though an athlete dribbles the ball in both sports, a basketball player uses his hands and a soccer player uses his feet. Usually, soccer is played outdoors on a large field and basketball is played indoor on a court made out of wood. The projectile (path traced) of soccer ball and basketball are in the form of parabola representing quadratic polynomial.
What will be the expression of the polynomial?
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`(-8)/3, 4/3`