Advertisements
Advertisements
प्रश्न
If the squared difference of the zeros of the quadratic polynomial f(x) = x2 + px + 45 is equal to 144, find the value of p.
उत्तर
Given α and β are the zeros of the quadratic polynomial f(x) = x2 + px + 45
`alpha+beta=-"coefficient of x"/("coefficient of "x^2)`
`=(-p)/1`
= -p
`alphabeta="constant term"/("coefficient of "x^2)`
`=45/1`
= 45
we have,
`(alpha-beta)^2=alpha^2+beta^2-2alphabeta`
`144=(alpha+beta)^2-2alphabeta-2alphabeta`
`144=(alpha+beta)^2-4alphabeta`
Substituting `alpha+beta=-p " and "alphabeta=45`
then we get,
`144=(-p)^2-4xx4`
`144=p^2-4xx45`
`144=p^2-180`
`144+180=p^2`
`324=p^2`
`sqrt(18xx18)=pxxp`
`+-18=p`
Hence, the value of p is ±18.
APPEARS IN
संबंधित प्रश्न
if α and β are the zeros of ax2 + bx + c, a ≠ 0 then verify the relation between zeros and its cofficients
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
4s2 – 4s + 1
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate :
`a(α^2/β+β^2/α)+b(α/β+β/α)`
Find a cubic polynomial whose zeroes are 2, -3and 4.
Find a cubic polynomial with the sum of its zeroes, sum of the products of its zeroes taken two at a time and the product of its zeroes as 5, -2 and -24 respectively.
Find all the zeroes of `(x^4 + x^3 – 23x^2 – 3x + 60)`, if it is given that two of its zeroes are `sqrt3 and –sqrt3`.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
4x2 – 3x – 1
Given that the zeroes of the cubic polynomial x3 – 6x2 + 3x + 10 are of the form a, a + b, a + 2b for some real numbers a and b, find the values of a and b as well as the zeroes of the given polynomial.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`v^2 + 4sqrt(3)v - 15`
If p(x) = x2 + 5x + 6, then p(– 2) is ______.