Advertisements
Advertisements
प्रश्न
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`v^2 + 4sqrt(3)v - 15`
उत्तर
Let p(v) = `v^2 + 4sqrt(3)v - 15`
= `v^2 + 5sqrt(3)v - sqrt(3)v - 15`
= `(v + 5sqrt(3)) (v - sqrt(3))`
So, the zeroes of p(v) are `5sqrt(3)` and `sqrt(3)`
∴ Sum of zeroes = `-5sqrt(3) + sqrt(3) = -4sqrt(3)`
= `(-("coefficient of" v))/("coefficient of" v^2)`
And product of zeroes = `(-5sqrt(3))(sqrt(3))`
= –5 × 3
= –15
= `"constant term"/("coefficient of" v^2)`
APPEARS IN
संबंधित प्रश्न
Find the zeros of the quadratic polynomial 6x2 - 13x + 6 and verify the relation between the zero and its coefficients.
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α2β + αβ2
If a and are the zeros of the quadratic polynomial f(x) = 𝑥2 − 𝑥 − 4, find the value of `1/alpha+1/beta-alphabeta`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − 3x − 2, find a quadratic polynomial whose zeroes are `1/(2alpha+beta)+1/(2beta+alpha)`
If α and β are the zeroes of the polynomial f(x) = x2 + px + q, form a polynomial whose zeroes are (α + β)2 and (α − β)2.
Find the quadratic polynomial whose zeroes are `2/3` and `-1/4`. Verify the relation between the coefficients and the zeroes of the polynomial.
Define a polynomial with real coefficients.
If x + 2 is a factor of x2 + ax + 2b and a + b = 4, then
If α and β are the zeros of a polynomial f(x) = px2 – 2x + 3p and α + β = αβ, then p is ______.
Find a quadratic polynomial whose zeroes are 6 and – 3.