Advertisements
Advertisements
प्रश्न
If x + 2 is a factor of x2 + ax + 2b and a + b = 4, then
विकल्प
a= 1, b = 3
a = 3, b = 1
a = −1, b = 5
a = 5, b = −1
उत्तर
Given that x + 2 is a factor of `x^2 + ax + 2b` and a + b=4
`f(x)=x ^2 +ax + 2b`
`f(-2)= (-2)^2 +a(-2 )+ 2b`
`0 = 4-2a +2b`
`-4 = -2a+2b`
By solving `-4 = -2a+2b` and a + b = 4 by elimination method we get
Multiply `a+b =4`by 2 we get,
`4 = 4b`
`4/4=b`
By substituting b = 1 in a + b = 4 we get
`a+1 =4`
`a = 4-1`
`a =3`
Then a = 3, b = 1
Hence, the correct choice is `(b).`
APPEARS IN
संबंधित प्रश्न
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
x2 – 2x – 8
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
`-1/4 ,1/4`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α - β
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha-1/beta`
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial f(x) = x2 − 5x + 4, find the value of `1/alpha+1/beta-2alphabeta`
If α and β are the zeros of the quadratic polynomial p(y) = 5y2 − 7y + 1, find the value of `1/alpha+1/beta`
Find the condition that the zeros of the polynomial f(x) = x3 + 3px2 + 3qx + r may be in A.P.
If f(x) =` x^4 – 3x^2 + 4x + 5` is divided by g(x)= `x^2 – x + 1`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
t3 – 2t2 – 15t
The zeroes of the polynomial p(x) = 25x2 – 49 are ______.