Advertisements
Advertisements
प्रश्न
Find the quadratic polynomial whose zeroes are `2/3` and `-1/4`. Verify the relation between the coefficients and the zeroes of the polynomial.
उत्तर
Let `∝ = 2/3 and -1/4`
Sum of the zeroes = `(∝ + β) = 2/3 + -1/4 = 5/12`
Product of the zeroes, = `2/3 x -1/4 = -1/6`
Required quadratic polynomial is
`x^2 - (∝ + beta)x + ∝beta`
= `x^2 - 5/12 x - (-1/6)`
= `1/12 (12x^2 - 5x - 2)`
And,
Sum of the zeroes = `5/12 = (-("Coefficient of x"))/(("Coefficent of "x^2))`
Product of zeroes = `-1/6=("Constant term")/("Coefficient of" x^2)`
APPEARS IN
संबंधित प्रश्न
Prove relation between the zeros and the coefficient of the quadratic polynomial ax2 + bx + c
Find all zeroes of the polynomial `(2x^4 - 9x^3 + 5x^2 + 3x - 1)` if two of its zeroes are `(2 + sqrt3)` and `(2 - sqrt3)`
If a and are the zeros of the quadratic polynomial f(x) = 𝑥2 − 𝑥 − 4, find the value of `1/alpha+1/beta-alphabeta`
If α and β are the zeroes of the polynomial f(x) = x2 + px + q, form a polynomial whose zeroes are (α + β)2 and (α − β)2.
Find a cubic polynomial with the sum of its zeroes, sum of the products of its zeroes taken two at a time and the product of its zeroes as 5, -2 and -24 respectively.
If α, β, γ are are the zeros of the polynomial f(x) = x3 − px2 + qx − r, the\[\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} =\]
The zeroes of the quadratic polynomial x2 + 99x + 127 are ______.
Find the sum and product of the roots of the quadratic equation 2x2 – 9x + 4 = 0.
If α, β are zeroes of the quadratic polynomial x2 – 5x + 6, form another quadratic polynomial whose zeroes are `1/α, 1/β`.
Find a quadratic polynomial whose zeroes are 6 and – 3.