Advertisements
Advertisements
प्रश्न
The zeroes of the quadratic polynomial x2 + 99x + 127 are ______.
विकल्प
Both positive
Both negative
One positive and one negative
Both equal
उत्तर
The zeroes of the quadratic polynomial x2 + 99x + 127 are both negative.
Explanation:
Let given quadratic polynomial be p(x) = x2 + 99x + 127
On comparing p(x) with ax2 + bx + c, we get
a = 1,
b = 99
Aand c = 127
We know that,
`x = (-b +- sqrt(b^2 - 4ac))/(2a)` .....[By quadratic formula]
= `(-99 +- sqrt((99)^2 - 4 xx 1 xx 127))/(2 xx 1)`
= `(-99 +- sqrt(9801 - 508))/2`
= `(-99 +- sqrt(9293))/2`
= `(-99 +- 96.4)/2`
= `(-2.6)/2, (-195.4)/2`
= `- 1.3, -97.7`
Hence, both zeroes of the given quadratic polynomial p(x) are negative.
Alternate Method:
In quadratic polynomical,
If `{:(a > 0, b > 0, c > 0),(a < 0, b < 0, c < 0):}}`
Then both zeroes are negative.
In given polynomial, we see that
a = 1 > 0,
b = 99 > 0
and c = 124 > 0
The above condition.
So, both zeroes of the given quadratic polynomial are negative.
APPEARS IN
संबंधित प्रश्न
Prove relation between the zeros and the coefficient of the quadratic polynomial ax2 + bx + c
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, − 7, − 14 respectively
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial f(x) = x2 − 5x + 4, find the value of `1/alpha+1/beta-2alphabeta`
Find the quadratic polynomial, sum of whose zeroes is 0 and their product is -1. Hence, find the zeroes of the polynomial.
If \[\sqrt{5}\ \text{and} - \sqrt{5}\] are two zeroes of the polynomial x3 + 3x2 − 5x − 15, then its third zero is
Can the quadratic polynomial x2 + kx + k have equal zeroes for some odd integer k > 1?
If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
If all three zeroes of a cubic polynomial x3 + ax2 – bx + c are positive, then at least one of a, b and c is non-negative.
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`21/8, 5/16`
Find the zeroes of the quadratic polynomial 6x2 – 3 – 7x and verify the relationship between the zeroes and the coefficients.