Advertisements
Advertisements
प्रश्न
The zeroes of the quadratic polynomial x2 + 99x + 127 are ______.
पर्याय
Both positive
Both negative
One positive and one negative
Both equal
उत्तर
The zeroes of the quadratic polynomial x2 + 99x + 127 are both negative.
Explanation:
Let given quadratic polynomial be p(x) = x2 + 99x + 127
On comparing p(x) with ax2 + bx + c, we get
a = 1,
b = 99
Aand c = 127
We know that,
`x = (-b +- sqrt(b^2 - 4ac))/(2a)` .....[By quadratic formula]
= `(-99 +- sqrt((99)^2 - 4 xx 1 xx 127))/(2 xx 1)`
= `(-99 +- sqrt(9801 - 508))/2`
= `(-99 +- sqrt(9293))/2`
= `(-99 +- 96.4)/2`
= `(-2.6)/2, (-195.4)/2`
= `- 1.3, -97.7`
Hence, both zeroes of the given quadratic polynomial p(x) are negative.
Alternate Method:
In quadratic polynomical,
If `{:(a > 0, b > 0, c > 0),(a < 0, b < 0, c < 0):}}`
Then both zeroes are negative.
In given polynomial, we see that
a = 1 > 0,
b = 99 > 0
and c = 124 > 0
The above condition.
So, both zeroes of the given quadratic polynomial are negative.
APPEARS IN
संबंधित प्रश्न
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
3x2 – x – 4
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α2β + αβ2
If α and β are the zeros of the quadratic polynomial f(x) = 6x2 + x − 2, find the value of `alpha/beta+beta/alpha`.
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial f(x) = x2 − 5x + 4, find the value of `1/alpha+1/beta-2alphabeta`
Verify that 5, -2 and 13 are the zeroes of the cubic polynomial `p(x) = (3x^3 – 10x^2 – 27x + 10)` and verify the relation between its zeroes and coefficients.
By actual division, show that x2 – 3 is a factor of` 2x^4 + 3x^3 – 2x^2 – 9x – 12.`
If α, β are the zeros of the polynomial f(x) = ax2 + bx + c, then\[\frac{1}{\alpha^2} + \frac{1}{\beta^2} =\]
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
5t2 + 12t + 7
Find the zeroes of the quadratic polynomial 6x2 – 3 – 7x and verify the relationship between the zeroes and the coefficients.
If the zeroes of the polynomial x2 + px + q are double in value to the zeroes of the polynomial 2x2 – 5x – 3, then find the values of p and q.