Advertisements
Advertisements
प्रश्न
If α, β are the zeros of the polynomial f(x) = ax2 + bx + c, then\[\frac{1}{\alpha^2} + \frac{1}{\beta^2} =\]
पर्याय
- \[\frac{b^2 - 2ac}{a^2}\]
- \[\frac{b^2 - 2ac}{c^2}\]
- \[\frac{b^2 + 2ac}{a^2}\]
- \[\frac{b^2 + 2ac}{c^2}\]
उत्तर
We have to find the value of `1/alpha^2+1/beta^2`
Given `alpha` and `beta` are the zeros of the quadratic polynomial f(x) = ax2 + bx + c,
`alpha + ß = - (-text{coefficient of x})/(text{coefficient of } x^3)`
`= (-b)/a`
`alphabeta= (\text{Coefficient of x})/(\text{Coefficient of}x^2)`
`= c/a`
We have,
`1/alpha^2+1/beta^2= (1/alpha+1/beta)^2- 2/(alphabeta)`
`1/alpha^2+1/beta^2=(beta/(alphabeta)+alpha/(alphabeta))- 2/(alphabeta)`
`1/alpha^2+1/beta^2=((alpha+beta)/(alphabeta))^2- 2/(alphabeta)`
`1/alpha^2+1/beta^2= (((-6)/a)/(c/a))^2 -2/(c/a)`
`1/alpha^2+1/beta^2= ((-b)/axxa/c)^2- 2/(c/a)`
`1/alpha^2+1/beta^2= ((-b)/cancel(a)xxcancel(a)/c)^2- 2/(c/a)`
`1/alpha^2+1/beta^2=((-b^2)/c)- (2a)/c`
`1/alpha^2+1/beta^2=((-b^2)/c^2)- (2axxc)/(cxxc)`
`1/alpha^2+1/beta^2=((-b^2)/c^2)- (2ac)/(c^2)`
`1/alpha^2+1/beta^2= (b^2 -2ac)/c^2`
Hence, the correct choice is `(b).`
APPEARS IN
संबंधित प्रश्न
If α and β are the zeros of the quadratic polynomial p(y) = 5y2 − 7y + 1, find the value of `1/alpha+1/beta`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − px + q, prove that `alpha^2/beta^2+beta^2/alpha^2=p^4/q^2-(4p^2)/q+2`
Find the zeroes of the quadratic polynomial f(x) = 4x2 - 4x - 3 and verify the relation between its zeroes and coefficients.
Find all the zeroes of `(x^4 + x^3 – 23x^2 – 3x + 60)`, if it is given that two of its zeroes are `sqrt3 and –sqrt3`.
If 𝛼, 𝛽 are the zeroes of the polynomial f(x) = x2 + x – 2, then `(∝/β-∝/β)`
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, the\[\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =\]
If two of the zeros of the cubic polynomial ax3 + bx2 + cx + d are each equal to zero, then the third zero is
Given that one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero, the product of the other two zeroes is ______.
If the zeroes of the polynomial x2 + px + q are double in value to the zeroes of the polynomial 2x2 – 5x – 3, then find the values of p and q.
Find the zeroes of the quadratic polynomial x2 + 6x + 8 and verify the relationship between the zeroes and the coefficients.