हिंदी

If α, β Are the Zeros of the Polynomial F(X) = Ax2 + Bx + C, Then 1 α 2 + 1 β 2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If α, β are the zeros of the polynomial f(x) = ax2 + bx + c, then1α2+1β2=

विकल्प

  • b22aca2
  • b22acc2
  • b2+2aca2
  • b2+2acc2
MCQ

उत्तर

We have to find the value of 1α2+1β2

Given α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c

α+ß=--coefficient of xcoefficient of x3

=-ba

αβ=Coefficient of xCoefficient ofx2

=ca

We have,

1α2+1β2=(1α+1β)2-2αβ

1α2+1β2=(βαβ+ααβ)-2αβ

1α2+1β2=(α+βαβ)2-2αβ

1α2+1β2=(-6aca)2-2ca

1α2+1β2=(-ba×ac)2-2ca

1α2+1β2=(-ba×ac)2-2ca

1α2+1β2=(-b2c)-2ac

1α2+1β2=(-b2c2)-2a×cc×c

1α2+1β2=(-b2c2)-2acc2

1α2+1β2=b2-2acc2

Hence, the correct choice is (b).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Polynomials - Exercise 2.5 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 2 Polynomials
Exercise 2.5 | Q 20 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.