हिंदी

If α, β, γ Are Are the Zeros of the Polynomial F(X) = X3 − Px2 + Qx − R, the 1 α β + 1 β γ + 1 γ α = - Mathematics

Advertisements
Advertisements

प्रश्न

If α, β, γ are are the zeros of the polynomial f(x) = x3 − px2 + qx − r, the\[\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} =\]

संक्षेप में उत्तर

उत्तर

We have to find the value of `1/(alphabeta)+1/(betay)+1/(yalpha)`

Given `alpha,beta,y` be the zeros of the polynomial f(x) = x3 − px2 + qx − r

`alpha + ß + y =  (-text{coefficient of }x^2)/(text{coefficient of } x^3)`

`= (-p)/1`

`= p`

`alphabetay= (-\text{Constant term})/(\text{Coefficient of}x^3)`

`(-(r))/1`

`= r`

Now we calculate the expression

`1/(alphabeta)+1/(betay)+1/(yalpha)= y/(alphabetay)+alpha/(alphabetay)+beta/(alphabetay)`

`1/(alphabeta)+1/(betay)+1/(yalpha)= (alpha+y+beta)/(alphabetay)`

`1/(alphabeta)+1/(betay)+1/(yalpha)= p/r`

Hence, the correct choice is `(b).`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Polynomials - Exercise 2.5 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 2 Polynomials
Exercise 2.5 | Q 19 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×