Advertisements
Advertisements
प्रश्न
If α, β, γ are are the zeros of the polynomial f(x) = x3 − px2 + qx − r, the\[\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} =\]
उत्तर
We have to find the value of `1/(alphabeta)+1/(betay)+1/(yalpha)`
Given `alpha,beta,y` be the zeros of the polynomial f(x) = x3 − px2 + qx − r,
`alpha + ß + y = (-text{coefficient of }x^2)/(text{coefficient of } x^3)`
`= (-p)/1`
`= p`
`alphabetay= (-\text{Constant term})/(\text{Coefficient of}x^3)`
`(-(r))/1`
`= r`
Now we calculate the expression
`1/(alphabeta)+1/(betay)+1/(yalpha)= y/(alphabetay)+alpha/(alphabetay)+beta/(alphabetay)`
`1/(alphabeta)+1/(betay)+1/(yalpha)= (alpha+y+beta)/(alphabetay)`
`1/(alphabeta)+1/(betay)+1/(yalpha)= p/r`
Hence, the correct choice is `(b).`
APPEARS IN
संबंधित प्रश्न
if α and β are the zeros of ax2 + bx + c, a ≠ 0 then verify the relation between zeros and its cofficients
If α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4, find the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
If the squared difference of the zeros of the quadratic polynomial f(x) = x2 + px + 45 is equal to 144, find the value of p.
Find the zeroes of the quadratic polynomial f(x) = 4x2 - 4x - 3 and verify the relation between its zeroes and coefficients.
Find a cubic polynomial whose zeroes are `1/2, 1 and -3.`
If 𝛼, 𝛽 are the zeroes of the polynomial `f(x) = 5x^2 -7x + 1` then `1/∝+1/β=?`
The number of polynomials having zeroes as –2 and 5 is ______.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`y^2 + 3/2 sqrt(5)y - 5`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`7y^2 - 11/3 y - 2/3`
Find the zeroes of the quadratic polynomial 6x2 – 3 – 7x and verify the relationship between the zeroes and the coefficients.