Advertisements
Advertisements
प्रश्न
If α, β, γ are are the zeros of the polynomial f(x) = x3 − px2 + qx − r, the\[\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} =\]
उत्तर
We have to find the value of `1/(alphabeta)+1/(betay)+1/(yalpha)`
Given `alpha,beta,y` be the zeros of the polynomial f(x) = x3 − px2 + qx − r,
`alpha + ß + y = (-text{coefficient of }x^2)/(text{coefficient of } x^3)`
`= (-p)/1`
`= p`
`alphabetay= (-\text{Constant term})/(\text{Coefficient of}x^3)`
`(-(r))/1`
`= r`
Now we calculate the expression
`1/(alphabeta)+1/(betay)+1/(yalpha)= y/(alphabetay)+alpha/(alphabetay)+beta/(alphabetay)`
`1/(alphabeta)+1/(betay)+1/(yalpha)= (alpha+y+beta)/(alphabetay)`
`1/(alphabeta)+1/(betay)+1/(yalpha)= p/r`
Hence, the correct choice is `(b).`
APPEARS IN
संबंधित प्रश्न
If the zeroes of the polynomial x3 – 3x2 + x + 1 are a – b, a, a + b, find a and b
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α4 + β4
Find the zeroes of the polynomial f(x) = `2sqrt3x^2-5x+sqrt3` and verify the relation between its zeroes and coefficients.
Find the quadratic polynomial whose zeroes are `2/3` and `-1/4` Verify the relation between the coefficients and the zeroes of the polynomial.
If `x =2/3` and x = -3 are the roots of the quadratic equation `ax^2+2ax+5x ` then find the value of a and b.
Verify that 5, -2 and 13 are the zeroes of the cubic polynomial `p(x) = (3x^3 – 10x^2 – 27x + 10)` and verify the relation between its zeroes and coefficients.
If α, β are the zeros of the polynomial f(x) = ax2 + bx + c, then\[\frac{1}{\alpha^2} + \frac{1}{\beta^2} =\]
Case Study -1
The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.
Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time ‘t’ in seconds is given by the polynomial h(t) such that h(t) = -16t2 + 8t + k.
The zeroes of the polynomial r(t) = -12t2 + (k - 3)t + 48 are negative of each other. Then k is ______.
A quadratic polynomial, whose zeroes are –3 and 4, is ______.
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`(-8)/3, 4/3`