मराठी

If Two of the Zeros of the Cubic Polynomial Ax3 + Bx2 + Cx + D Are Each Equal to Zero, Then the Third Zero is - Mathematics

Advertisements
Advertisements

प्रश्न

If two of the zeros of the cubic polynomial ax3 + bx2 + cx + d are each equal to zero, then the third zero is

पर्याय

  • \[\frac{- d}{a}\]
  • \[\frac{c}{a}\]
  • \[\frac{- b}{a}\]
  • \[\frac{b}{a}\]
MCQ

उत्तर

Let `alpha = 0, beta=0` and y be the zeros of the polynomial

f(x)= ax3 + bx2 + cx + d 

Therefore

`alpha + ß + y= (-text{coefficient of }X^2)/(text{coefficient of } x^3)`

`= -(b/a)`

`alpha+beta+y = -b/a`

`0+0+y = -b/a`

`y = - b/a`

`\text{The value of}  y - b/a`

Hence, the correct choice is `(c).`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Polynomials - Exercise 2.5 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 2 Polynomials
Exercise 2.5 | Q 21 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×