English

If the Squared Difference of the Zeros of the Quadratic Polynomial F(X) = X2 + Px + 45 is Equal to 144, Find the Value Of P. - Mathematics

Advertisements
Advertisements

Question

If the squared difference of the zeros of the quadratic polynomial f(x) = x2 + px + 45 is equal to 144, find the value of p.

Solution

Given α and β are the zeros of the quadratic polynomial f(x) = x2 + px + 45

`alpha+beta=-"coefficient of x"/("coefficient of "x^2)`

`=(-p)/1`

= -p

`alphabeta="constant term"/("coefficient of "x^2)`

`=45/1`

= 45

we have,

`(alpha-beta)^2=alpha^2+beta^2-2alphabeta`

`144=(alpha+beta)^2-2alphabeta-2alphabeta`

`144=(alpha+beta)^2-4alphabeta`

Substituting `alpha+beta=-p " and "alphabeta=45`

then we get,

`144=(-p)^2-4xx4`

`144=p^2-4xx45`

`144=p^2-180`

`144+180=p^2`

`324=p^2`

`sqrt(18xx18)=pxxp`

`+-18=p`

Hence, the value of p is ±18.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.1 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 2 Polynomials
Exercise 2.1 | Q 12 | Page 35
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×