Advertisements
Advertisements
Question
If the squared difference of the zeros of the quadratic polynomial f(x) = x2 + px + 45 is equal to 144, find the value of p.
Solution
Given α and β are the zeros of the quadratic polynomial f(x) = x2 + px + 45
`alpha+beta=-"coefficient of x"/("coefficient of "x^2)`
`=(-p)/1`
= -p
`alphabeta="constant term"/("coefficient of "x^2)`
`=45/1`
= 45
we have,
`(alpha-beta)^2=alpha^2+beta^2-2alphabeta`
`144=(alpha+beta)^2-2alphabeta-2alphabeta`
`144=(alpha+beta)^2-4alphabeta`
Substituting `alpha+beta=-p " and "alphabeta=45`
then we get,
`144=(-p)^2-4xx4`
`144=p^2-4xx45`
`144=p^2-180`
`144+180=p^2`
`324=p^2`
`sqrt(18xx18)=pxxp`
`+-18=p`
Hence, the value of p is ±18.
APPEARS IN
RELATED QUESTIONS
if α and β are the zeros of ax2 + bx + c, a ≠ 0 then verify the relation between zeros and its cofficients
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`f(x)=x^2-(sqrt3+1)x+sqrt3`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − 1, find a quadratic polynomial whose zeroes are `(2alpha)/beta" and "(2beta)/alpha`
If α and β are the zeros of a quadratic polynomial such that α + β = 24 and α − β = 8, find a quadratic polynomial having α and β as its zeros.
If f(x) = `x^4– 5x + 6" is divided by g(x) "= 2 – x2`
If two of the zeros of the cubic polynomial ax3 + bx2 + cx + d are each equal to zero, then the third zero is
If two zeroes of the polynomial x3 + x2 − 9x − 9 are 3 and −3, then its third zero is
The number of polynomials having zeroes as –2 and 5 is ______.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
4x2 – 3x – 1
Find the zeroes of the quadratic polynomial 6x2 – 3 – 7x and verify the relationship between the zeroes and the coefficients.