Advertisements
Advertisements
प्रश्न
Find the zeroes of the quadratic polynomial `4x^2 - 4x + 1` and verify the relation between the zeroes and the coefficients.
Find the zeroes of the polynomial 4x2 − 4x + 1 and verify there rationship between the zeroes and the coefficients.
उत्तर १
`4x^2 ˗ 4x + 1 = 0`
`⇒ (2x^2)-2(2x)(1)+(1)^2=0`
`⇒ (2x-1)^2=0` [`∵ a^2-2ab+b^2=(a-b)^2`]
`⇒(2x-1)^2=0`
`⇒x=1/2 or x=1/2`
Sum of zeroes =`1/2+1/2=1=1/1=(("Coefficient of x "))/(("Coefficient of "x^2))`
Product of zeroes`=1/2xx1/2=1/4 ("Constand term")/(("Coefficint of "x^2))`
उत्तर २
Given, Polynomial is 4x2 − 4x + 1 ...(i)
⇒ 4x2 − 2x − 2x + 1
⇒ 2x (2x − 1) − 1(2x − 1)
⇒ (2x − 1) (2x − 1)
⇒ x = `1/2`
Hence, zeroes of a given Polynomial is x = `1/2`
On comparing equation (i) with ax2 + bx + c = 0,
we get a = 4, b = − 4 and c = 1
Now, the sum of zeroes = `(-"b")/"a" = (-(-4))/4 = 1`
Product of zeroes = `"c"/"a" = 1/4`
which Matches with:
Sum of the zero = `1/2 + 1/2 = 2/2 = 1`
Product of the zero = `1/2 xx 1/2 = 1/4`
APPEARS IN
संबंधित प्रश्न
If α and β are the zeroes of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/(aalpha+b)+1/(abeta+b)`.
If α and β are the zeros of the quadratic polynomial p(y) = 5y2 − 7y + 1, find the value of `1/alpha+1/beta`
If the sum of the zeros of the quadratic polynomial f(t) = kt2 + 2t + 3k is equal to their product, find the value of k.
If α and β are the zeros of the quadratic polynomial f(x) = x2 − p (x + 1) — c, show that (α + 1)(β +1) = 1− c.
If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are α + 2, β + 2.
If α and β are the zeroes of the polynomial f(x) = x2 + px + q, form a polynomial whose zeroes are (α + β)2 and (α − β)2.
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, then α2 + β2 + γ2 =
If p(x) = axr + bx + c, then –`"b"/"a"` is equal to ______.
If one of the zeroes of the quadratic polynomial (k – 1)x2 + k x + 1 is –3, then the value of k is ______.
Find the zeroes of the quadratic polynomial 4s2 – 4s + 1 and verify the relationship between the zeroes and the coefficients.