Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If a and are the zeros of the quadratic polynomial f(x) = ЁЭСе2 − ЁЭСе − 4, find the value of `1/alpha+1/beta-alphabeta`
рдЙрддреНрддрд░
Since ЁЭЫ╝ + ЁЭЫ╜ are the zeroes of the polynomial: ЁЭСе2 − ЁЭСе − 4
Sum of the roots (α + β) = 1
Product of the roots (αβ) = −4
`1/alpha+1/beta-alphabeta`
`=(alpha+beta)/(alphabeta)-alphabeta`
`=(1/-4)+4=(-1/4)+4=(-1+16)/4=15/4`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Prove relation between the zeros and the coefficient of the quadratic polynomial ax2 + bx + c
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha-1/beta`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate :
`a(α^2/β+β^2/α)+b(α/β+β/α)`
If the zeros of the polynomial f(x) = 2x3 − 15x2 + 37x − 30 are in A.P., find them.
Find the zeroes of the quadratic polynomial` (x^2 ╦Ч 5)` and verify the relation between the zeroes and the coefficients.
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, the\[\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =\]
A quadratic polynomial, the sum of whose zeroes is 0 and one zero is 3, is
If \[\sqrt{5}\ \text{and} - \sqrt{5}\] are two zeroes of the polynomial x3 + 3x2 − 5x − 15, then its third zero is
Case Study -1
The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.
Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time ‘t’ in seconds is given by the polynomial h(t) such that h(t) = -16t2 + 8t + k.
The zeroes of the polynomial r(t) = -12t2 + (k - 3)t + 48 are negative of each other. Then k is ______.
If the zeroes of the polynomial x2 + px + q are double in value to the zeroes of the polynomial 2x2 – 5x – 3, then find the values of p and q.