рдорд░рд╛рдареА

If a and Are the Zeros of the Quadratic Polynomial F(X) = ЁЭСе2 тИТ ЁЭСе тИТ 4, Find the Value of `1/Alpha+1/Beta-alphabeta` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If a and are the zeros of the quadratic polynomial f(x) = ЁЭСе2 − ЁЭСе − 4, find the value of `1/alpha+1/beta-alphabeta`

рдЙрддреНрддрд░

Since ЁЭЫ╝ + ЁЭЫ╜ are the zeroes of the polynomial: ЁЭСе2 − ЁЭСе − 4

Sum of the roots (α + β) = 1

Product of the roots (αβ) = −4

`1/alpha+1/beta-alphabeta`

`=(alpha+beta)/(alphabeta)-alphabeta`

`=(1/-4)+4=(-1/4)+4=(-1+16)/4=15/4`

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 2: Polynomials - Exercise 2.1 [рдкреГрд╖реНрда рейрек]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдкрд╛рда 2 Polynomials
Exercise 2.1 | Q 4 | рдкреГрд╖реНрда рейрек

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [2]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

Prove relation between the zeros and the coefficient of the quadratic polynomial ax2 + bx + c


If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha-1/beta`


If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate :

`a(α^2/β+β^2/α)+b(α/β+β/α)`


If the zeros of the polynomial f(x) = 2x3 − 15x2 + 37x − 30 are in A.P., find them.


Find the zeroes of the quadratic polynomial` (x^2 ╦Ч 5)` and verify the relation between the zeroes and the coefficients.


If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, the\[\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =\]


A quadratic polynomial, the sum of whose zeroes is 0 and one zero is 3, is


If \[\sqrt{5}\ \text{and} - \sqrt{5}\]   are two zeroes of the polynomial x3 + 3x2 − 5x − 15, then its third zero is


Case Study -1

The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.

Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time ‘t’ in seconds is given by the polynomial h(t) such that h(t) = -16t2 + 8t + k.

The zeroes of the polynomial r(t) = -12t2 + (k - 3)t + 48 are negative of each other. Then k is ______.


If the zeroes of the polynomial x2 + px + q are double in value to the zeroes of the polynomial 2x2 – 5x – 3, then find the values of p and q.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×