Advertisements
Advertisements
प्रश्न
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha-1/beta`
उत्तर
f(x) = ax2 + bx + c
α + β = `(-b/a)`
αβ = `c/a`
since α + β are the roots (or) zeroes of the given polynomials
then
`1/alpha-1/beta=(beta-alpha)/(alphabeta)=(-(alpha-beta))/(alphabeta)` ................(i)
From (i) we know that `alpha - beta = sqrt(b^2-4ac)/(2a)`
αβ = `c/a`
Putting the values in the (a) `=-((sqrtb^2-4acxxa)/(axxc))=(-sqrt(b^2-4ac))/c`
APPEARS IN
संबंधित प्रश्न
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α4 + β4
If a and 3 are the zeros of the quadratic polynomial f(x) = x2 + x − 2, find the value of `1/alpha-1/beta`.
If one zero of the quadratic polynomial f(x) = 4x2 − 8kx − 9 is negative of the other, find the value of k.
If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are `(alpha-1)/(alpha+1)` , `(beta-1)/(beta+1)`
Find the quadratic polynomial whose zeroes are `2/3` and `-1/4`. Verify the relation between the coefficients and the zeroes of the polynomial.
If `x =2/3` and x = -3 are the roots of the quadratic equation `ax^2+2ax+5x ` then find the value of a and b.
If 1 and –2 are two zeroes of the polynomial `(x^3 – 4x^2 – 7x + 10)`, find its third zero.
If two zeroes of the polynomial x3 + x2 − 9x − 9 are 3 and −3, then its third zero is
If \[\sqrt{5}\ \text{and} - \sqrt{5}\] are two zeroes of the polynomial x3 + 3x2 − 5x − 15, then its third zero is
Given that `sqrt(2)` is a zero of the cubic polynomial `6x^3 + sqrt(2)x^2 - 10x - 4sqrt(2)`, find its other two zeroes.