Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If ЁЭЫ╝ and ЁЭЫ╜ are the zeros of the quadratic polynomial p(x) = 4x2 − 5x −1, find the value of α2β + αβ2.
рдЙрддреНрддрд░
Since ЁЭЫ╝ ЁЭСОЁЭСЫЁЭСС ЁЭЫ╜ are the roots of the polynomial: 4ЁЭСе2 − 5ЁЭСе − 1
∴ Sum of the roots `alpha+beta=5/4`
Product of the roots `alphabeta=(-1)/4`
Hence `alpha^2beta+alphabeta^2=alphabeta(alpha+beta)=5/4((-1)/4)=(-5)/16`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
x2 – 2x – 8
If a and 3 are the zeros of the quadratic polynomial f(x) = x2 + x − 2, find the value of `1/alpha-1/beta`.
If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are α + 2, β + 2.
Find the condition that the zeros of the polynomial f(x) = x3 + 3px2 + 3qx + r may be in A.P.
If α, β are the zeros of the polynomial f(x) = ax2 + bx + c, then\[\frac{1}{\alpha^2} + \frac{1}{\beta^2} =\]
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`4x^2 + 5sqrt(2)x - 3`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`2s^2 - (1 + 2sqrt(2))s + sqrt(2)`
If one zero of the polynomial p(x) = 6x2 + 37x – (k – 2) is reciprocal of the other, then find the value of k.
Find the zeroes of the quadratic polynomial x2 + 6x + 8 and verify the relationship between the zeroes and the coefficients.
The zeroes of the polynomial p(x) = 25x2 – 49 are ______.