Advertisements
Advertisements
प्रश्न
Find the zeroes of the quadratic polynomial `(8x^2 ˗ 4)` and verify the relation between the zeroes and the coefficients
उत्तर
We have:
`f(x)=8x^2-4`
It can be written as `8x^2+o x -4`
=`4{(sqrt2x)^2-(1)^2}`
=`4(sqrt2x+1) (sqrt2x-1)`
∴ `f(x)=0⇒ (sqrt2x+1) (sqrt2x-1)=0`
⇒ `(sqrt2x+1)=0 or sqrt2x-1=0`
⇒ `x=(-1)/sqrt2 or x=1/sqrt2`
So, the zeroes of f(x) are `(-1)/sqrt2 and 1/sqrt2`
Here the coefficient of x is 0 and the coefficient of `x^2` is `sqrt2`
Sum of zeroes = `-1/sqrt2+1/sqrt2=(-1+1)/sqrt2=0/sqrt2=-(("Coefficent of x"))/(("Coefficient of" x^2))`
Product of zeroes=`-1/sqrt2xx1/sqrt2=(-1xx4)/(2xx4)=-4/8=("Constant term")/(("Coefficient of" x^2))`
APPEARS IN
संबंधित प्रश्न
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
`-1/4 ,1/4`
If α and β are the zeros of the quadratic polynomial p(s) = 3s2 − 6s + 4, find the value of `alpha/beta+beta/alpha+2[1/alpha+1/beta]+3alphabeta`
Find the quadratic polynomial, sum of whose zeroes is `sqrt2` and their product is `(1/3)`.
Define a polynomial with real coefficients.
The polynomial which when divided by −x2 + x − 1 gives a quotient x − 2 and remainder 3, is
If one of the zeroes of the cubic polynomial x3 + ax2 + bx + c is –1, then the product of the other two zeroes is ______.
Can the quadratic polynomial x2 + kx + k have equal zeroes for some odd integer k > 1?
If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.
If the zeroes of the polynomial x2 + px + q are double in value to the zeroes of the polynomial 2x2 – 5x – 3, then find the values of p and q.
If α, β are the zeroes of the polynomial p(x) = 4x2 – 3x – 7, then `(1/α + 1/β)` is equal to ______.