Advertisements
Advertisements
प्रश्न
Can the quadratic polynomial x2 + kx + k have equal zeroes for some odd integer k > 1?
उत्तर
A Quadratic Equation will have equal roots if it satisfies the condition:
b2 – 4ac = 0
Given equation is x2 + kx + k = 0
a = 1, b = k, x = k
Substituting in the equation we get,
k2 – 4(1)(k) = 0
k2 – 4k = 0
k(k – 4) = 0
k = 0, k = 4
But in the question, it is given that k is greater than 1.
Hence the value of k is 4 if the equation has common roots.
Hence if the value of k = 4, then the equation (x2 + kx + k) will have equal roots.
APPEARS IN
संबंधित प्रश्न
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
4u2 + 8u
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha-1/beta`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha+1/beta-2alphabeta`
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial f(x) = x2 − 5x + 4, find the value of `1/alpha+1/beta-2alphabeta`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − 1, find a quadratic polynomial whose zeroes are `(2alpha)/beta" and "(2beta)/alpha`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`4x^2 + 5sqrt(2)x - 3`
The only value of k for which the quadratic polynomial kx2 + x + k has equal zeros is `1/2`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`v^2 + 4sqrt(3)v - 15`
The zeroes of the polynomial p(x) = 25x2 – 49 are ______.
Find the zeroes of the quadratic polynomial 4s2 – 4s + 1 and verify the relationship between the zeroes and the coefficients.