Advertisements
Advertisements
प्रश्न
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
4u2 + 8u
उत्तर
4u2 + 8u = 4u(u + 2)
= 4[u - 0][u - (-2)]
For p(u) = 0, we have
Either 4u = 0
u = -2
∴ The zeroes of 4u2 + 8u are 0 and -2.
Relationship between the zeroes and the coefficients of the polynomial
Sum of the zeroes = `-("Coefficient of " u)/("Coefficient of " u^2)`
= `0 + (-2) =(-(8))/4`
= -2 = -2
Also product of the zeroes = `"Constant term"/("Coefficient of " u^2)`
= `0 xx (-2) = 0/4`
= 0 = 0
Thus, the relationship between the zeroes and the coefficients in the polynomial 4u2 + 8u is verified.
APPEARS IN
संबंधित प्रश्न
Find the zeros of the quadratic polynomial 4x2 - 9 and verify the relation between the zeros and its coffiecents.
If two zeroes of the polynomial x4 – 6x3 – 26x2 + 138x – 35 are 2 ± `sqrt3` , find other zeroes
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`f(x)=x^2-(sqrt3+1)x+sqrt3`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha+1/beta-2alphabeta`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate α2β + αβ2
If α and β are the zeroes of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/(aalpha+b)+1/(abeta+b)`.
If α and β are the zeros of the quadratic polynomial f(x) = 6x2 + x − 2, find the value of `alpha/beta+beta/alpha`.
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial f(t) = t2 − 4t + 3, find the value of `alpha^4beta^3+alpha^3beta^4`
If α and β are the zeros of the quadratic polynomial f(x) = x2 − 3x − 2, find a quadratic polynomial whose zeroes are `1/(2alpha+beta)+1/(2beta+alpha)`
If the zeros of the polynomial f(x) = ax3 + 3bx2 + 3cx + d are in A.P., prove that 2b3 − 3abc + a2d = 0.
Find the zeroes of the quadratic polynomial `4x^2 - 4x + 1` and verify the relation between the zeroes and the coefficients.
Find the zeroes of the quadratic polynomial `(8x^2 ˗ 4)` and verify the relation between the zeroes and the coefficients
Define a polynomial with real coefficients.
The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms.
If the sum of the roots is –p and the product of the roots is `-1/"p"`, then the quadratic polynomial is:
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`2x^2 + (7/2)x + 3/4`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`2s^2 - (1 + 2sqrt(2))s + sqrt(2)`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`v^2 + 4sqrt(3)v - 15`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`y^2 + 3/2 sqrt(5)y - 5`
Find the zeroes of the quadratic polynomial 4s2 – 4s + 1 and verify the relationship between the zeroes and the coefficients.