Advertisements
Advertisements
प्रश्न
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`2x^2 + (7/2)x + 3/4`
उत्तर
`2x^2 + (7/2)x + 3/4`
The equation can also be written as,
8x2 + 14x + 3
Splitting the middle term, we get,
8x2 + 12x + 2x + 3
Taking the common factors out, we get,
4x(2x + 3) + 1(2x + 3)
On grouping, we get,
(4x + 1)(2x + 3)
So, the zeroes are,
4x + 1 = 0
`\implies` x = `-1/4`
2x + 3 = 0
`\implies` x = `-3/2`
Therefore, zeroes are `-1/4` and `-3/2`
Verification:
Sum of the zeroes = – (coefficient of x) ÷ coefficient of x2
α + β = `- b/a`
`(-3/2) + (-1/4) = - (7)/4`
= `-7/4`
Product of the zeroes = constant term ÷ coefficient of x2
αβ = `c/a`
`(-3/2)(-1/4) = (3/4)/2`
= `3/8`
APPEARS IN
संबंधित प्रश्न
Find the zeros of the quadratic polynomial 9x2 - 5 and verify the relation between the zeros and its coefficients.
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
3x2 – x – 4
Find the zeroes of the quadratic polynomial `(8x^2 ˗ 4)` and verify the relation between the zeroes and the coefficients
Find the quadratic polynomial, sum of whose zeroes is `( 5/2 )` and their product is 1. Hence, find the zeroes of the polynomial.
If f(x) = `x^4– 5x + 6" is divided by g(x) "= 2 – x2`
On dividing `3x^3 + x^2 + 2x + 5` is divided by a polynomial g(x), the quotient and remainder are (3x – 5) and (9x + 10) respectively. Find g(x).
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, then α2 + β2 + γ2 =
If p(x) = axr + bx + c, then –`"b"/"a"` is equal to ______.
Can the quadratic polynomial x2 + kx + k have equal zeroes for some odd integer k > 1?
The zeroes of the polynomial p(x) = 25x2 – 49 are ______.