Advertisements
Advertisements
प्रश्न
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
4u2 + 8u
उत्तर
4u2 + 8u = 4u(u + 2)
= 4[u - 0][u - (-2)]
For p(u) = 0, we have
Either 4u = 0
u = -2
∴ The zeroes of 4u2 + 8u are 0 and -2.
Relationship between the zeroes and the coefficients of the polynomial
Sum of the zeroes = `-("Coefficient of " u)/("Coefficient of " u^2)`
= `0 + (-2) =(-(8))/4`
= -2 = -2
Also product of the zeroes = `"Constant term"/("Coefficient of " u^2)`
= `0 xx (-2) = 0/4`
= 0 = 0
Thus, the relationship between the zeroes and the coefficients in the polynomial 4u2 + 8u is verified.
APPEARS IN
संबंधित प्रश्न
Find the zeros of the quadratic polynomial 4x2 - 9 and verify the relation between the zeros and its coffiecents.
Find the zeros of the quadratic polynomial 9x2 - 5 and verify the relation between the zeros and its coefficients.
If the zeroes of the polynomial x3 – 3x2 + x + 1 are a – b, a, a + b, find a and b
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha+1/beta-2alphabeta`
If a and are the zeros of the quadratic polynomial f(x) = 𝑥2 − 𝑥 − 4, find the value of `1/alpha+1/beta-alphabeta`
If a and 3 are the zeros of the quadratic polynomial f(x) = x2 + x − 2, find the value of `1/alpha-1/beta`.
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and product of its zeros as 3, −1 and −3 respectively.
Find the zeroes of the quadratic polynomial f(x) = 4x2 - 4x - 3 and verify the relation between its zeroes and coefficients.
Find the zeroes of the quadratic polynomial` (x^2 ˗ 5)` and verify the relation between the zeroes and the coefficients.
Find the zeroes of the quadratic polynomial `(8x^2 ˗ 4)` and verify the relation between the zeroes and the coefficients
Find the quadratic polynomial whose zeroes are `2/3` and `-1/4` Verify the relation between the coefficients and the zeroes of the polynomial.
Find the quadratic polynomial, sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.
Find the quadratic polynomial, sum of whose zeroes is `sqrt2` and their product is `(1/3)`.
If α, β, γ are are the zeros of the polynomial f(x) = x3 − px2 + qx − r, the\[\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} =\]
If α, β are the zeros of the polynomial f(x) = ax2 + bx + c, then\[\frac{1}{\alpha^2} + \frac{1}{\beta^2} =\]
The product of the zeros of x3 + 4x2 + x − 6 is
If \[\sqrt{5}\ \text{and} - \sqrt{5}\] are two zeroes of the polynomial x3 + 3x2 − 5x − 15, then its third zero is
Can the quadratic polynomial x2 + kx + k have equal zeroes for some odd integer k > 1?
The zeroes of the polynomial p(x) = 25x2 – 49 are ______.
Find the zeroes of the quadratic polynomial 4s2 – 4s + 1 and verify the relationship between the zeroes and the coefficients.