Advertisements
Advertisements
प्रश्न
If α and β are the zeros of the quadratic polynomial f(x) = x2 − 1, find a quadratic polynomial whose zeroes are `(2alpha)/beta" and "(2beta)/alpha`
उत्तर
Since α and β are the zeros of the quadratic polynomial f(x) = x2 − 1
The roots are α and β
`alpha+beta="-coefficient of x"/("coefficient of "x^2)`
`alpha+beta=0/1`
`alpha+beta=0`
`alphabeta="constant term"/("coefficient of "x^2)`
`alphabeta=(-1)/1`
`alphabeta=-1`
Let S and P denote respectively the sum and product of zeros of the required polynomial. Then,
`S=(2alpha)/beta+(2beta)/alpha`
Taking least common factor we get,
`S=(2alpha^2+2beta^2)/(alphabeta)`
`S=(2(alpha^2+beta^2))/(alphabeta)`
`S=(2[(alpha+beta)-2alphabeta])/(alphabeta)`
`S=(2[(0)-2(-1)])/-1`
`S=(2[-2(-1)])/-1`
`S=(2xx2)/-1`
`S=4/-1`
S = -4
`P=(2alpha)/betaxx(2beta)/alpha`
P = 4
Hence, the required polynomial f(x) is given by,
f(x) = k(x2 - Sx + P)
f(x) = k(x2 -(-4)x + 4)
f(x) = k(x2 +4x +4)
Hence, required equation is f(x) = k(x2 +4x +4) Where k is any non zero real number.
APPEARS IN
संबंधित प्रश्न
Find the zeros of the quadratic polynomial 6x2 - 13x + 6 and verify the relation between the zero and its coefficients.
Find the zeros of the quadratic polynomial 9x2 - 5 and verify the relation between the zeros and its coefficients.
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
t2 – 15
If (x+a) is a factor of the polynomial `2x^2 + 2ax + 5x + 10`, find the value of a.
Verify that 3, -2, 1 are the zeros of the cubic polynomial `p(x) = (x^3 – 2x2 – 5x + 6)` and verify the relation between it zeros and coefficients.
Find a cubic polynomial whose zeroes are `1/2, 1 and -3.`
Define a polynomial with real coefficients.
If α, β are the zeros of the polynomial f(x) = ax2 + bx + c, then\[\frac{1}{\alpha^2} + \frac{1}{\beta^2} =\]
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
t3 – 2t2 – 15t
Given that `sqrt(2)` is a zero of the cubic polynomial `6x^3 + sqrt(2)x^2 - 10x - 4sqrt(2)`, find its other two zeroes.