Advertisements
Advertisements
प्रश्न
Find a cubic polynomial whose zeroes are 2, -3and 4.
उत्तर
If the zeroes of the cubic polynomial are a, b and c then the cubic polynomial can be found as
`x^3 – (a + b + c)x^2 + (ab + bc + ca)x – abc` .................(1)
Let a = 2, b = –3 and c = 4
`x^3 – (2 – 3 + 4)x^2 + (– 6 – 12 + 8)x – (–24)`
`⇒ x^3 – 3x^2 – 10x + 24`
APPEARS IN
संबंधित प्रश्न
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
1, 1
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `beta/(aalpha+b)+alpha/(abeta+b)`
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate :
`a(α^2/β+β^2/α)+b(α/β+β/α)`
Find the condition that the zeros of the polynomial f(x) = x3 + 3px2 + 3qx + r may be in A.P.
Find the quadratic polynomial, sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.
If f(x) =` x^4 – 3x^2 + 4x + 5` is divided by g(x)= `x^2 – x + 1`
If α, β, γ are are the zeros of the polynomial f(x) = x3 − px2 + qx − r, the\[\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} =\]
Case Study -1
The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.
Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time ‘t’ in seconds is given by the polynomial h(t) such that h(t) = -16t2 + 8t + k.
The zeroes of the polynomial r(t) = -12t2 + (k - 3)t + 48 are negative of each other. Then k is ______.
Given that `sqrt(2)` is a zero of the cubic polynomial `6x^3 + sqrt(2)x^2 - 10x - 4sqrt(2)`, find its other two zeroes.
A quadratic polynomial whose sum and product of zeroes are 2 and – 1 respectively is ______.