हिंदी

Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively. 0,5 - Mathematics

Advertisements
Advertisements

प्रश्न

Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.

`0, sqrt5`

योग

उत्तर

Given: α + β = 0, αβ = `sqrt5`

Since ax2 + bx + c = k[x2 - (α + β)x + αβ]

Or `(ax^2 + bx + c)/k = (x^2 - 0x + sqrt5)`

or `(ax^2 + bx + c)/k = (x^2 + sqrt5)/1`

Here k is a constant term, by comparing k = 1

Hence, ax2 + bx + c = `x^2 + sqrt5`

The quadratic polynomial is `x^2 + sqrt5`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Polynomials - Exercise 2.2 [पृष्ठ ३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 2 Polynomials
Exercise 2.2 | Q 2.3 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:

4s2 – 4s + 1


Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.

6x2 – 3 – 7x


Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, − 7, − 14 respectively


If the zeroes of the polynomial x3 – 3x2 + x + 1 are a – b, a, a + b, find a and b


Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients

`p(x) = x^2 + 2sqrt2x + 6`


If a and are the zeros of the quadratic polynomial f(x) = 𝑥2 − 𝑥 − 4, find the value of `1/alpha+1/beta-alphabeta`


If the sum of the zeros of the quadratic polynomial f(t) = kt2 + 2t + 3k is equal to their product, find the value of k.


If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are `(alpha-1)/(alpha+1)` , `(beta-1)/(beta+1)`


If the zeros of the polynomial f(x) = x3 − 12x2 + 39x + k are in A.P., find the value of k.


Find the zeroes of the quadratic polynomial f(x) = 4x2 - 4x - 3 and verify the relation between its zeroes and coefficients.


Find the zeroes of the quadratic polynomial `4x^2 - 4x + 1` and verify the relation between the zeroes and the coefficients. 


If 1 and –2 are two zeroes of the polynomial `(x^3 – 4x^2 – 7x + 10)`, find its third zero.


If 3 and –3 are two zeroes of the polynomial `(x^4 + x^3 – 11x^2 – 9x + 18)`, find all the zeroes of the given polynomial.  


If 𝛼, 𝛽 are the zeroes of the polynomial f(x) = x2 + x – 2, then `(∝/β-∝/β)` 

 


If two zeroes of the polynomial x3 + x2 − 9x − 9 are 3 and −3, then its third zero is


If \[\sqrt{5}\ \text{and} - \sqrt{5}\]   are two zeroes of the polynomial x3 + 3x2 − 5x − 15, then its third zero is


The polynomial which when divided by −x2 + x − 1 gives a quotient x − 2 and remainder 3, is


Check whether g(x) is a factor of p(x) by dividing polynomial p(x) by polynomial g(x),
where p(x) = x5 − 4x3 + x2 + 3x +1, g(x) = x3 − 3x + 1


If the zeroes of the polynomial x2 + px + q are double in value to the zeroes of the polynomial 2x2 – 5x – 3, then find the values of p and q.


If one zero of the polynomial p(x) = 6x2 + 37x – (k – 2) is reciprocal of the other, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×