Advertisements
Advertisements
Question
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
`0, sqrt5`
Solution
Given: α + β = 0, αβ = `sqrt5`
Since ax2 + bx + c = k[x2 - (α + β)x + αβ]
Or `(ax^2 + bx + c)/k = (x^2 - 0x + sqrt5)`
or `(ax^2 + bx + c)/k = (x^2 + sqrt5)/1`
Here k is a constant term, by comparing k = 1
Hence, ax2 + bx + c = `x^2 + sqrt5`
The quadratic polynomial is `x^2 + sqrt5`.
APPEARS IN
RELATED QUESTIONS
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
6x2 – 3 – 7x
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients:
t2 – 15
Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case
x3 – 4x2 + 5x – 2; 2, 1, 1
If two zeroes of the polynomial x4 – 6x3 – 26x2 + 138x – 35 are 2 ± `sqrt3` , find other zeroes
Find all zeroes of the polynomial `(2x^4 - 9x^3 + 5x^2 + 3x - 1)` if two of its zeroes are `(2 + sqrt3)` and `(2 - sqrt3)`
If α and β are the zeros of a quadratic polynomial such that α + β = 24 and α − β = 8, find a quadratic polynomial having α and β as its zeros.
If If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are `(alpha-1)/(alpha+1)` , `(beta-1)/(beta+1)`
If the zeros of the polynomial f(x) = x3 − 12x2 + 39x + k are in A.P., find the value of k.
Find the zeroes of the quadratic polynomial f(x) = 4x2 - 4x - 3 and verify the relation between its zeroes and coefficients.
Find the zeroes of the quadratic polynomial `2x^2 ˗ 11x + 15` and verify the relation between the zeroes and the coefficients.
Find the quadratic polynomial, sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.
Find the quadratic polynomial, sum of whose zeroes is `( 5/2 )` and their product is 1. Hence, find the zeroes of the polynomial.
If f(x) =` x^4 – 3x^2 + 4x + 5` is divided by g(x)= `x^2 – x + 1`
What should be subtracted to the polynomial x2 − 16x + 30, so that 15 is the zero of the resulting polynomial?
If the zeroes of a quadratic polynomial ax2 + bx + c are both positive, then a, b and c all have the same sign.
If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`4x^2 + 5sqrt(2)x - 3`
If α, β are the zeroes of the polynomial p(x) = 4x2 – 3x – 7, then `(1/α + 1/β)` is equal to ______.
If p(x) = x2 + 5x + 6, then p(– 2) is ______.
The zeroes of the polynomial p(x) = 2x2 – x – 3 are ______.