हिंदी

If 3 and –3 Are Two Zeroes of the Polynomial `(X^4 + X^3 – 11x^2 – 9x + 18)`, Find All the Zeroes of the Given Polynomial. - Mathematics

Advertisements
Advertisements

प्रश्न

If 3 and –3 are two zeroes of the polynomial `(x^4 + x^3 – 11x^2 – 9x + 18)`, find all the zeroes of the given polynomial.  

उत्तर

Let `x^4 + x^3 – 11x^2 – 9x + 18`
Since 3 and – 3 are the zeroes of f(x), it follows that each one of (x + 3) and (x – 3) is a factor of f(x).
Consequently, `(x – 3) (x + 3) = (x^2 – 9)` is a factor of f(x).
On dividing `f(x)   by  (x^2 – 9)`, we get:   

  

`f(x) = 0 ⇒ (x^2 + x – 2) (x^2 – 9) = 0`
⇒ `(x^2 + 2x – x – 2) (x – 3) (x + 3)`
⇒ `(x – 1) (x + 2) (x – 3) (x + 3) = 0`
⇒ `x = 1 or x = -2 or x = 3 or x = -3`
Hence, all the zeroes are 1, -2, 3 and -3.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Polynomials - Exercises 2

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 2 Polynomials
Exercises 2 | Q 14

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.

4u2 + 8u


Find a quadratic polynomial with the given numbers as the sum and product of its zeroes, respectively.

`sqrt2 , 1/3`


Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.

4, 1


If the zeros of the polynomial f(x) = 2x3 − 15x2 + 37x − 30 are in A.P., find them.


If the zeros of the polynomial f(x) = ax3 + 3bx2 + 3cx + d are in A.P., prove that 2b3 − 3abc + a2d = 0.


Find the zeroes of the quadratic polynomial `4x^2 - 4x + 1` and verify the relation between the zeroes and the coefficients. 


Find the zeroes of the quadratic polynomial `(3x^2 ˗ x ˗ 4)` and verify the relation between the zeroes and the coefficients.  


If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 cx + d, then α2 + β2 + γ2 =


Check whether g(x) is a factor of p(x) by dividing polynomial p(x) by polynomial g(x),
where p(x) = x5 − 4x3 + x2 + 3x +1, g(x) = x3 − 3x + 1


An asana is a body posture, originally and still a general term for a sitting meditation pose, and later extended in hatha yoga and modern yoga as exercise, to any type of pose or position, adding reclining, standing, inverted, twisting, and balancing poses. In the figure, one can observe that poses can be related to representation of quadratic polynomial.

The zeroes of the quadratic polynomial `4sqrt3"x"^2 + 5"x" - 2sqrt3` are:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×