Advertisements
Advertisements
प्रश्न
Check whether g(x) is a factor of p(x) by dividing polynomial p(x) by polynomial g(x),
where p(x) = x5 − 4x3 + x2 + 3x +1, g(x) = x3 − 3x + 1
उत्तर
We have been given two polynomials
P(x) = x5 - 4x3 + x2 + 3x + 1 and g(x) = x3 - 3x + 1
We will say g(x) is factor of p(x) if remainder is zero when we divide p(x) by g(x).
x3 -3x + 1)`("x"^2-1)/("x"^5-4"x"^3+"x"^2+3"x"+1)`
`"x"^5-"x"^3+"x"^2`
- + -
-x3 + 3x +1
-x3 + 3x - 1
+ - +
2
Here, the remainder is 2 ≠ 0
g(x) is not a factor of p(x)
Notes
x3 -3x + 1)`("x"^2-1)/("x"^5-4"x"^3+"x"^2+3"x"+1)`
`"x"^5-"x"^3+"x"^2`
- + -
-x3 + 3x +1
-x3 + 3x - 1
+ - +
APPEARS IN
संबंधित प्रश्न
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/alpha-1/beta`
If α and β are the zeros of the quadratic polynomial p(y) = 5y2 − 7y + 1, find the value of `1/alpha+1/beta`
If one zero of the quadratic polynomial f(x) = 4x2 − 8kx − 9 is negative of the other, find the value of k.
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and product of its zeros as 3, −1 and −3 respectively.
What should be added to the polynomial x2 − 5x + 4, so that 3 is the zero of the resulting polynomial?
If \[\sqrt{5}\ \text{and} - \sqrt{5}\] are two zeroes of the polynomial x3 + 3x2 − 5x − 15, then its third zero is
A quadratic polynomial, whose zeroes are –3 and 4, is ______.
If the zeroes of a quadratic polynomial ax2 + bx + c are both positive, then a, b and c all have the same sign.
If all three zeroes of a cubic polynomial x3 + ax2 – bx + c are positive, then at least one of a, b and c is non-negative.
If α, β are zeroes of quadratic polynomial 5x2 + 5x + 1, find the value of α2 + β2.