Advertisements
Advertisements
प्रश्न
Find the shortest distance between the lines `(x-1)/2=(y-2)/3=(z-3)/4 and (x-2)/3=(y-4)/4=(z-5)/5`
उत्तर
The lines are
`(x-1)/2=(y-2)/3=(z-3)/4` ...(1)
`(x-2)/3=(y-4)/4=(z-5)/5` ...(2)
Here
`x_1=1,y_1=2,z_1=3 and a_1=2,b_1=3,c_1=4`
`x_2=2,y_2=4,z_2=5 and a_2=3,b_2=4,c_2=5`
Shortest distance between the lines is
`d=|[x_2-x_1,y_2-y_1,z_2-z_1],[a_1,b_1,c_1],[a_2,b_2,c_2]|/sqrt((b_1c_2-b_2c_1)^2+(c_1a_2-c_2a_1)^2+(a_1b_2-a_2b_1)^2)`
Now `|[x_2-x_1,y_2-y_1,z_2-z_1],[a_1,b_1,c_1],[a_2,b_2,c_2]|=|[1,2,2],[2,3,4],[3,4,5]|`
`=1(15-16)-2(10-12)+2(8-9)=-1+4-2=1`
and `(b_1c_2-b_2c_1)^2+(c_1a_2-c_2a_1)^2+(a_1b_2-a_2b_1)^2=(15-16)^2+(12-10)^2+(8-9)^2`
`=1+4+1=6`
Hence, the shortest distance between lines (1) and (2) = `|1/sqrt6|=1/sqrt6` units
संबंधित प्रश्न
Find the joint equation of the pair of lines through the origin each of which is making an angle of 30° with the line 3x + 2y - 11 = 0
Find the cartesian equation of the line passing throught the points A(3, 4, -7) and B(6,-1, 1).
If 2x + y = 0 is one of the lines represented by 3x2 + kxy + 2y2 = 0, then the value of k is
Find the shortest distance between the lines
`(x+1)/7 = (y + 1)/(-6) = (z + 1)/1 and (x - 3)/1 = (y - 5)/(-2) = (z - 7)/1`
Find 'p' and 'q' if the equation px2 - 8xy +3y2 +14 x +2y +q = 0 represents a pair of perpendicular lines.