हिंदी

Find the Square of the Following Number: 995 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the square of the following number: 

995 

उत्तर

 Here, n = 99 

\[\therefore\] n(+ 1) = (99)(100) = 9900 

\[\therefore\] 9952 = 990025 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Squares and Square Roots - Exercise 3.3 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 8
अध्याय 3 Squares and Square Roots
Exercise 3.3 | Q 4.8 | पृष्ठ ३२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

What will be the units digit of the square of the following number? 

977 


Observe the following pattern
22 − 12 = 2 + 1
32 − 22 = 3 + 2
42 − 32 = 4 + 3
52 − 42 = 5 + 4
and find the value of 

 1112 − 1092


Observe the following pattern 

\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) = \frac{2 \times 3 \times 4}{3}\] 

\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) + \left( 3 \times 4 \right) = \frac{3 \times 4 \times 5}{3}\] 

\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) + \left( 3 \times 4 \right) + \left( 4 \times 5 \right) = \frac{4 \times 5 \times 6}{3}\] 

and find the value of(1 × 2) + (2 × 3) + (3 × 4) + (4 × 5) + (5 × 6)


Observe the following pattern \[1^2 = \frac{1}{6}\left[ 1 \times \left( 1 + 1 \right) \times \left( 2 \times 1 + 1 \right) \right]\]
\[ 1^2 + 2^2 = \frac{1}{6}\left[ 2 \times \left( 2 + 1 \right) \times \left( 2 \times 2 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 = \frac{1}{6}\left[ 3 \times \left( 3 + 1 \right) \times \left( 2 \times 3 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 + 4^2 = \frac{1}{6}\left[ 4 \times \left( 4 + 1 \right) \times \left( 2 \times 4 + 1 \right) \right]\] and find the values :  

12 + 22 + 32 + 4+ ... + 102

 

 


Which of the following number  square of even number? 

1296 


Find the squares of the following numbers using diagonal method: 

98


Find the square of the following number:  

205 


If m is the square of a natural number n, then n is ______.


The sum of two perfect squares is a perfect square.


Put three different numbers in the circles so that when you add the numbers at the end of each line you always get a perfect square.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×