Advertisements
Advertisements
प्रश्न
Find the square of the following number:
995
उत्तर
Here, n = 99
\[\therefore\] n(n + 1) = (99)(100) = 9900
\[\therefore\] 9952 = 990025
APPEARS IN
संबंधित प्रश्न
What will be the units digit of the square of the following number?
977
Observe the following pattern
22 − 12 = 2 + 1
32 − 22 = 3 + 2
42 − 32 = 4 + 3
52 − 42 = 5 + 4
and find the value of
1112 − 1092
Observe the following pattern
\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) = \frac{2 \times 3 \times 4}{3}\]
\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) + \left( 3 \times 4 \right) = \frac{3 \times 4 \times 5}{3}\]
\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) + \left( 3 \times 4 \right) + \left( 4 \times 5 \right) = \frac{4 \times 5 \times 6}{3}\]
and find the value of(1 × 2) + (2 × 3) + (3 × 4) + (4 × 5) + (5 × 6)
Observe the following pattern \[1^2 = \frac{1}{6}\left[ 1 \times \left( 1 + 1 \right) \times \left( 2 \times 1 + 1 \right) \right]\]
\[ 1^2 + 2^2 = \frac{1}{6}\left[ 2 \times \left( 2 + 1 \right) \times \left( 2 \times 2 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 = \frac{1}{6}\left[ 3 \times \left( 3 + 1 \right) \times \left( 2 \times 3 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 + 4^2 = \frac{1}{6}\left[ 4 \times \left( 4 + 1 \right) \times \left( 2 \times 4 + 1 \right) \right]\] and find the values :
12 + 22 + 32 + 42 + ... + 102
Which of the following number square of even number?
1296
Find the squares of the following numbers using diagonal method:
98
Find the square of the following number:
205
If m is the square of a natural number n, then n is ______.
The sum of two perfect squares is a perfect square.
Put three different numbers in the circles so that when you add the numbers at the end of each line you always get a perfect square.