हिंदी

Find the Sum of the First 11 Terms of the A.P : 2, 6, 10, 14, ... - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the first 11 terms of the A.P : 2, 6, 10, 14, ...

उत्तर

In the given problem, we need to find the sum of terms for different arithmetic progressions. So, here we use the following formula for the sum of n terms of an A.P.,

`S_n = n/2[2a  + (n - 1)d]`

Where; a = first term for the given A.P.

d = common difference of the given A.P.

= number of terms

2, 6, 10, 14, ... to 11 terms

Common difference of the A.P. (d) = `a_2 - a_1`

= 6 - 2

= 4

Number of terms (n) = 11

The first term for the given A.P. (a) = 2

So, using the formula we get,

`S_n = 11/2 [2(2) + (11 - 1)(4)]`

`= (11/2)[4 + (10)(4)]`

`= (11/2)[4 + 40]`

`= (11/2) [44]`

= 242

Therefore, the sum of first 11 terms for the given A.P. is 242

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Arithmetic Progression - Exercise 5.6 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 5 Arithmetic Progression
Exercise 5.6 | Q 11.1 | पृष्ठ ५१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×