Advertisements
Advertisements
प्रश्न
Find the sum of the first 13 terms of the A.P: -6, 0, 6, 12,....
उत्तर
In the given problem, we need to find the sum of terms for different arithmetic progressions. So, here we use the following formula for the sum of n terms of an A.P.,
`S_n = n/2 [2a + (n - 1)d]`
Where; a = first term for the given A.P.
d = common difference of the given A.P.
n = number of terms
-6, 0, 6, 12,....To 13 terms
Common difference of the A.P. (d) = `a_2 - a_1`
= 0 - (-6)
= 6
Number of terms (n) = 13
First term for the given A.P. (a) = -6
So, using the formula we get,
`S_n = 13/2 [2(-6) + (13 - 1)(6)]`
`= (13/2)[-12 + (12)(6)]`
`= (13/2)[-12 + 72]`
`= (13/2)[60]`
= 390
Therefore, the sum of first 13 terms for the given A.P. is 390
APPEARS IN
संबंधित प्रश्न
Ramkali required Rs 2,500 after 12 weeks to send her daughter to school. She saved Rs 100 in the first week and increased her weekly saving by Rs 20 every week. Find whether she will be able to send her daughter to school after 12 weeks.
What value is generated in the above situation?
Find the sum of first 40 positive integers divisible by 6.
Find the sum of all integers between 84 and 719, which are multiples of 5.
The first and last terms of an AP are a and l respectively. Show that the sum of the nth term from the beginning and the nth term form the end is ( a + l ).
The sum of the first n terms of an AP is given by `s_n = ( 3n^2 - n) ` Find its
(i) nth term,
(ii) first term and
(iii) common difference.
Find the first term and common difference for the A.P.
127, 135, 143, 151,...
Choose the correct alternative answer for the following question .
The sequence –10, –6, –2, 2,...
For an given A.P., t7 = 4, d = −4, then a = ______.
Q.10
Find second and third terms of an A.P. whose first term is – 2 and the common difference is – 2.