Advertisements
Advertisements
प्रश्न
Find the sum of the first 15 terms of each of the following sequences having the nth term as
`a_n = 3 + 4n`
उत्तर
Here, we are given an A.P. whose nth term is given by the following expression `a_n = 3 + 4n`. We need to find the sum of first 15 terms.
So, here we can find the sum of the n terms of the given A.P., using the formula,
`S_n = (n/2)(a + l)`
Where a = the first term
l = the last term
So, for the given A.P,
The first term (a) will be calculated using n = 1 in the given equation for nth term of A.P.
a= 3 + 4(1)
= 3 + 4
= 7
Now, the last term (l) or the nth term is given
`l = a_n = 3 +4n`
So, on substituting the values in the formula for the sum of n terms of an A.P., we get,
`S_15 = (15/2) [(7) + 3 + 4 (15)]`
`= (15/2)[10 + 60]`
= (15/2)(70)
`= (15)(35)`
= 525
Therefore, the sum of the 15 terms of the given A.P. is `S_15 = 525`
APPEARS IN
संबंधित प्रश्न
The sum of the first p, q, r terms of an A.P. are a, b, c respectively. Show that `\frac { a }{ p } (q – r) + \frac { b }{ q } (r – p) + \frac { c }{ r } (p – q) = 0`
The first term of an A.P. is 5, the last term is 45 and the sum of its terms is 1000. Find the number of terms and the common difference of the A.P.
Which term of the AP 3,8, 13,18,…. Will be 55 more than its 20th term?
What is the 5th term form the end of the AP 2, 7, 12, …., 47?
Find the first term and common difference for the A.P.
0.6, 0.9, 1.2,1.5,...
In an A.P. sum of three consecutive terms is 27 and their product is 504, find the terms.
(Assume that three consecutive terms in A.P. are a – d, a, a + d).
If `4/5` , a, 2 are three consecutive terms of an A.P., then find the value of a.
The given terms are 2k + 1, 3k + 3 and 5k − 1. find AP.
Find the sum of the first 10 multiples of 6.