हिंदी

Find the Sum of First 22 Terms of an A.P. in Which D = 22 and a = 149. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of first 22 terms of an A.P. in which d = 22 and a = 149.

Let there be an A.P. with first term 'a', common difference 'd'. If an denotes in nth term and Sn the sum of first n terms, find.

S22, if d=22 and a22=149

 

योग

उत्तर १

Given 22nd term, a22=149 and difference d = 22

we know an=a+(n-1)d

22 nd term, a22=a+(22-1)d

149=a+21×22

a=149-462

a=-313

We know, sum of n terms

Sn=n2[2a+(n-1)d]

S22=222[2(-313)+(22-1)22]

S22=11[-626+21×22]

S22=11[-626+462]

S22=11×-164

S22=-1804

Hence sum of 22 terms -1804

shaalaa.com

उत्तर २

Given d = 22, 

a22=149

We know that

an = a + (n-1)d

149=a+(221)22
149=a+462
a=313

Now, Sum is given by

Sn=n2[2a+(n-1)d]

Where; a = first term for the given A.P.

d = common difference of the given A.P.

= number of terms

So, using the formula for n = 22, we get

S22=222{2×(313)+(221)×22)}
S22=11{626+462}
S22=1804

Hence, the sum of 22 terms is −1804.

 

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Arithmetic Progression - Exercise 5.6 [पृष्ठ ५३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 5 Arithmetic Progression
Exercise 5.6 | Q 56.8 | पृष्ठ ५३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.