हिंदी

Find the area of ellipse x24+y225 = 1. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the area of ellipse `x^2/(4) + y^2/(25)` = 1.

योग

उत्तर



By the symmetry of the ellipse, required area of the ellipse is 4 times the area of the region OPQO.
For the region OPQO, the limits of integration are x = 0 and x = 2.

Given equation of the ellipse is `x^2/(4) + y^2/(25)` = 1

∴ `y^2/(25) = 1 - x^2/(4)`

∴ y2 = `25(1 - x^2/4)`

= `(25)/(4)(4 - x^2)`

∴ y = `± (5)/(2)sqrt(4 - x^2)`

∴ y = `(5)/(2)sqrt(4 - x^2)`   ...[∵ In first quadrant, y . 0]

∴ Required area = 4(area of the region OPQO)

= `4int_0^2 y*dx`

= `4int_0^2 (5)/(2)sqrt(4 - x^2)*dx`

= `(4 xx 5)/(2) int_0^2 sqrt((2)^2 - x^2)*dx`

= `10[x/2 sqrt((2)^2 - x^2) + (2)^2/(2)sin^-1(x/2)]_0^2`

= `10{[2/2 sqrt((2)^2 - (2)^2) + (2)^2/(2)sin^-1(2/2)] - [0/2 sqrt((2)^2 - (0)^2) + (2)^2/(2)sin^-1(0/2)]}`

= 10{[0 + 2 sin–1 (1)] – [0 + 0]}

= `10(2 xx pi/2)`
= 10π sq. units.

shaalaa.com
Standard Forms of Ellipse
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Applications of Definite Integration - Exercise 7.1 [पृष्ठ १५७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Applications of Definite Integration
Exercise 7.1 | Q 4 | पृष्ठ १५७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×