हिंदी

Find the capacity in litres of a conical vessel with height 12 cm and slant height 13 cm. Assume [Assume π=227] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the capacity in litres of a conical vessel with height 12 cm and slant height 13 cm.

`["Assume "pi=22/7]`

योग

उत्तर १

Height (h) of cone = 12 cm

Slant height (l) of cone = 13 cm

Radius (r) of cone = `sqrt(l^2-h^2)`

= `(sqrt(13^2-12^2))  cm`

= 5 cm

Volume of cone = `1/3pir^2h`

= `[1/3xx22/7xx(5)^2xx12]cm^3`

= `(4xx22/7xx25)cm^3`

= `(2200/7)cm^3`

Therefore, the capacity of the conical vessel

= `(2200/7000) "litres"`          ...(1 litre = 1000 cm3)

= `11/35 "litres"`

shaalaa.com

उत्तर २

In a cone, the vertical height ‘h’ is given as 12 cm and the slant height ‘l’ is given as 13 cm.

To find the base radius ‘r’ we use the relation between r, l and h.

We know that in a cone

`l^2 = r^2 +h^2`

`r^2 =l^2 - h^2`

`r = sqrt(l^2 - h^2)`

= `sqrt(13^2 - 12^2)`

=` sqrt(169 - 144)`

= `sqrt(25)`

= 5

Therefore, the base radius is, r = 5 cm.

Substituting the values of r = 5 cm and h = 12 cm in the above equation and using `pi = 22/7`

Volume = `((22)(5)(5)(12))/((3)(7))`

= 314.28

Hence, the volume of the given cone with the specified dimensions is `314.28  "cm"^3`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Surface Area and Volumes - Exercise 13.7 [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 13 Surface Area and Volumes
Exercise 13.7 | Q 2.2 | पृष्ठ २३३
आरडी शर्मा Mathematics [English] Class 9
अध्याय 20 Surface Areas and Volume of A Right Circular Cone
Exercise 20.2 | Q 2.2 | पृष्ठ २०

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×