हिंदी

Find the centre and radius of the circle. x2 + y2 – 4x – 8y – 45 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the centre and radius of the circle.

x2 + y2 – 4x – 8y – 45 = 0

योग

उत्तर

The equation of the given circle is x2 + y2 – 4x – 8y – 45 = 0.

x2 + y2 – 4x – 8y – 45 = 0

⇒ (x2 – 4x) + (y– 8y) = 45

⇒ {x2 – 2(x)(2) + 22} + {y2 – 2(y)(4)+ 42} – 4 –16 = 45

⇒ (x – 2)2 + (y –4)2 = 65

⇒ (x – 2)2 + (y –4)2 = `(sqrt(65))^2`, which is of the form (x – h)2 + (y – k)2 = r2, where h = 2, k = 4, and `r = sqrt65`.

Thus, the centre of the given circle is (2, 4), while its radius is `sqrt65`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise 11.1 [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise 11.1 | Q 7 | पृष्ठ २४१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×