हिंदी

Find the centre and radius of the circle. x2 + y2 – 8x + 10y – 12 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the centre and radius of the circle.

x2 + y2 – 8x + 10y – 12 = 0

योग

उत्तर

The equation of the given circle is x2 + y2 – 8x + 10y – 12 = 0.

x2 + y2 – 8x + 10y – 12 = 0

⇒ (x2 – 8x) + (y+ 10y) = 12

⇒ {x2 – 2(x)(4) + 42} + {y+ 2(y)(5) + 52} –16 – 25 = 12

⇒ (x – 4)2 + (y + 5)2 = 53

⇒ (x - 4)^2 + {y-(-5)}^2 = (sqrt53)^2`which is of the form (x – h)2 + (y – k)2 = r2, where h = 4, k = –5, and r = `sqrt53`

Thus, the centre of the given circle is (4, –5), while its radius is `sqrt53`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise 11.1 [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise 11.1 | Q 8 | पृष्ठ २४१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×