हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Find the coefficient of x4 in the expansion e3-4x+x2e2x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coefficient of x4 in the expansion `(3 - 4x + x^2)/"e"^(2x)`

योग

उत्तर

`(3 - 4x + x^2)/"e"^(2x) = (3 - 4x + x^2)  "e"^(-2x)`

= `(3 -4x + x^2) [1 + (-2x)/(1!) + (-2x)^2/(∠2) + (-2x)^3/(∠3) ...]`

Coeffiient of x4: `3[(-2)^4/(4!)] - 4[(-2)^3/(3!)] + 1[(-2)^2/(2!)]`  

= `3[16/24] + (- 4) ((- 8))/6 + 4/2`

= `48/24 + 32/6 + 2`

= `2 + 16/3 + 2`

= `(6 + 16 + 6)/3`

 `28/3`

shaalaa.com
Infinite Sequences and Series
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Binomial Theorem, Sequences and Series - Exercise 5.4 [पृष्ठ २३१]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 5 Binomial Theorem, Sequences and Series
Exercise 5.4 | Q 9 | पृष्ठ २३१

संबंधित प्रश्न

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`1/(5 + x)`


Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(5 + x^2)^(2/3)`


Find `root(3)(10001)` approximately (two decimal places


Prove that `sqrt((1 - x)/(1 + x))` is approximately euqal to `1 - x + x^2/2` when x is very small


Write the first 6 terms of the exponential series
e5x 


Write the first 6 terms of the exponential series
`"e"^(-2x)`


Write the first 4 terms of the logarithmic series
log(1 – 2x) Find the intervals on which the expansions are valid.


Write the first 4 terms of the logarithmic series
`log((1 - 2x)/(1 + 2x))` Find the intervals on which the expansions are valid.


If y = `x + x^2/2 + x^3/3 + x^4/4  ...`, then show that x = `y - y^2/(2!) + y^3/(3!) - y^4/(4) + ...`


Find the value of `sum_("n" = 1)^oo 1/(2"n" - 1) (1/(9^("n" - 1)) + 1/(9^(2"n"- 1)))`


Choose the correct alternative:
The coefficient of x6 in (2 + 2x)10 is


Choose the correct alternative:
If (1 + x2)2 (1 + x)n = a0 + a1x + a2x2 + …. + xn + 4 and if a0, a1, a2 are in AP, then n is


Choose the correct alternative:
The sum up to n terms of the series `1/(sqrt(1)  +sqrt(3)) + 1/(sqrt(3) + sqrt(5)) + 1/(sqrt(5) + sqrt(7)) + ...` is 


Choose the correct alternative:
The value of the series `1/2 + 7/4 + 13/8 + 19/16 + ...` is


Choose the correct alternative:
The coefficient of x5 in the series e-2x is


Choose the correct alternative:
The value of `1 - 1/2(2/3) + 1/3(2/3)^2  1/4(2/3)^3 + ...` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×