हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Write the first 6 terms of the exponential seriese5x - Mathematics

Advertisements
Advertisements

प्रश्न

Write the first 6 terms of the exponential series
e5x 

योग

उत्तर

ex = `1 + x/(∠1) + x^2/(∠2) + x^3/(∠3)`

So e5x = `1  (5x)/(∠1) + (5x)^2/(∠2) + (5x)^3/(∠3) + (5x)^4/(∠4) + ....` 

= `1 + 5x + (25x^2)/2 + (125x^3)/6 + (625x^4)/24 + 3125/120 x^5 + 15625/72 x^6 ...`

= `1 + 5x + (25x^2)/2 + (125x^3)/6 + (625x^4)/24 + (625x^5)/24 + (3125x^6)/144 ...`

shaalaa.com
Infinite Sequences and Series
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Binomial Theorem, Sequences and Series - Exercise 5.4 [पृष्ठ २३१]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 5 Binomial Theorem, Sequences and Series
Exercise 5.4 | Q 5. (i) | पृष्ठ २३१

संबंधित प्रश्न

Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid

`(5 + x^2)^(2/3)`


Prove that `sqrt((1 - x)/(1 + x))` is approximately euqal to `1 - x + x^2/2` when x is very small


Write the first 6 terms of the exponential series
`"e"^(1/2x)`


Write the first 4 terms of the logarithmic series
log(1 + 4x) Find the intervals on which the expansions are valid.


Write the first 4 terms of the logarithmic series
log(1 – 2x) Find the intervals on which the expansions are valid.


Write the first 4 terms of the logarithmic series
`log((1 + 3x)/(1 -3x))` Find the intervals on which the expansions are valid.


If y = `x + x^2/2 + x^3/3 + x^4/4  ...`, then show that x = `y - y^2/(2!) + y^3/(3!) - y^4/(4) + ...`


If p − q is small compared to either p or q, then show `root("n")("p"/"q")` `(("n" + 1)"p" + ("n" - 1)"q")/(("n"- 1)"p" +("n" + 1)"q")`. Hence find `root(8)(15/16)`


Find the coefficient of x4 in the expansion `(3 - 4x + x^2)/"e"^(2x)`


Choose the correct alternative:
The coefficient of x6 in (2 + 2x)10 is


Choose the correct alternative:
If a is the arithmetic mean and g is the geometric mean of two numbers, then


Choose the correct alternative:
If (1 + x2)2 (1 + x)n = a0 + a1x + a2x2 + …. + xn + 4 and if a0, a1, a2 are in AP, then n is


Choose the correct alternative:
If Sn denotes the sum of n terms of an AP whose common difference is d, the value of Sn − 2Sn−1 + Sn−2 is


Choose the correct alternative:
The sum up to n terms of the series `1/(sqrt(1)  +sqrt(3)) + 1/(sqrt(3) + sqrt(5)) + 1/(sqrt(5) + sqrt(7)) + ...` is 


Choose the correct alternative:
The value of the series `1/2 + 7/4 + 13/8 + 19/16 + ...` is


Choose the correct alternative:
The sum of an infinite GP is 18. If the first term is 6, the common ratio is


Choose the correct alternative:
The coefficient of x5 in the series e-2x is


Choose the correct alternative:
The value of `1 - 1/2(2/3) + 1/3(2/3)^2  1/4(2/3)^3 + ...` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×