हिंदी

Find the derivative of f(x) = xn, where n is positive integer, by first principle. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of f(x) = xn, where n is positive integer, by first principle.

योग

उत्तर

By definition,

f'(x) = `(f(x + h) - f(x))/h`

= `((x + h)^n - x^n)/h`

Using Binomial theorem,

We have `(x + h)^n = ""^nC_0 x^n + ""^nC_1 x^(n - 1) h + ... + ""^nC_n h^n`

Thus, f'(x) = `lim_(h -> 0) ((x + h)^n - x^n)/h`

= `lim_(h -> 0) (h(nx^(n - 1) + ... + h^(n - 1)))/h`

= `nx^(n - 1)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Solved Examples [पृष्ठ २३१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Solved Examples | Q 11 | पृष्ठ २३१

संबंधित प्रश्न

`lim_(x -> 0) x sin  1/x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×