हिंदी

Find the derivative of f(x) = sin x, by first principle. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of f(x) = sin x, by first principle.

योग

उत्तर

By definition,

f'(x) = `lim_(h -> 0) (f(x + h) - f(x))/h`

= `lim_(h -> 0) (sin(x + h) - sinx)/h`

= `lim_(h -> 0) (2cos  (2x + h)/2 sin  h/2)/(2 * h/2)`

= `lim_(h -> 0) cos  ((2x + h))/2 * lim_(h -> 0)  (sin  h/2)/(h/2)`

= `cos x . 1` 

= cos x

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Solved Examples [पृष्ठ २३०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Solved Examples | Q 10 | पृष्ठ २३०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For some constants a and b, find the derivative of (x – a) (x – b).


For some constants a and b, find the derivative of `(x - a)/(x - b)`.


Find the derivative of `(x^n - a^n)/(x -a)` for some constant a.


Find the derivative of cos x from first principle.


Find the derivative of the following function.

sin x cos x 


Find the derivative of the following function:

5 sec x + 4 cos x


Find the derivative of the following function:

cosec x


Find the derivative of the following function:

5sin x – 6cos x + 7


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax2 + sin x) (p + q cos x)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`x/(sin^n x)`


Find the derivative of f(x) = ax + b, where a and b are non-zero constants, by first principle


Find the derivative of f(x) = ax2 + bx + c, where a, b and c are none-zero constant, by first principle.


Find the derivative of f(x) = x3, by first principle.


Find the derivative of f(x) = `1/x` by first principle.


`(x + 1/x)^3`


`(3x + 4)/(5x^2 - 7x + 9)`


`(x^2 cos  pi/4)/sinx`


(2x – 7)2 (3x + 5)3 


x2 sin x + cos 2x


If `y = sqrt(x) + 1/sqrt(x)`, then`(dy)/(dx)` at x = 1 is  ______.


If `y = (1 + 1/x^2)/(1 - 1/x^2)` then `(dy)/(dx)` is ______.


If `y = (sin x + cos x)/(sin x - cos x)`, then `(dy)/(dx)` at x = 0 is ______.


If `y = (sin(x + 9))/cosx` then `(dy)/(dx)` at x = 0 is ______.


If `f(x) = x^100 + x^99 .... +  x + 1`, then f'(1) is equal to ______.


If `f(x) = 1 - x + x^2 - x^3 + ... -x^99 + x^100`, then f'(1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×