Advertisements
Advertisements
प्रश्न
Find the derivative of f(x) = sin x, by first principle.
उत्तर
By definition,
f'(x) = `lim_(h -> 0) (f(x + h) - f(x))/h`
= `lim_(h -> 0) (sin(x + h) - sinx)/h`
= `lim_(h -> 0) (2cos (2x + h)/2 sin h/2)/(2 * h/2)`
= `lim_(h -> 0) cos ((2x + h))/2 * lim_(h -> 0) (sin h/2)/(h/2)`
= `cos x . 1`
= cos x
APPEARS IN
संबंधित प्रश्न
For some constants a and b, find the derivative of (x – a) (x – b).
For some constants a and b, find the derivative of `(x - a)/(x - b)`.
Find the derivative of `(x^n - a^n)/(x -a)` for some constant a.
Find the derivative of the following function:
sec x
Find the derivative of the following function:
cosec x
Find the derivative of the following function:
5sin x – 6cos x + 7
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax2 + sin x) (p + q cos x)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`x/(1 + tan x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + sec x) (x – tan x)
Find the derivative of f(x) = ax + b, where a and b are non-zero constants, by first principle
Find the derivative of f(x) = `1/x` by first principle.
`(x^4 + x^3 + x^2 + 1)/x`
`(x + 1/x)^3`
`(3x + 4)/(5x^2 - 7x + 9)`
`(x^5 - cosx)/sinx`
`(x^2 cos pi/4)/sinx`
(sin x + cos x)2
(2x – 7)2 (3x + 5)3
x2 sin x + cos 2x
If `y = (1 + 1/x^2)/(1 - 1/x^2)` then `(dy)/(dx)` is ______.
If `y = (sin x + cos x)/(sin x - cos x)`, then `(dy)/(dx)` at x = 0 is ______.
If `f(x) = 1 + x + x^2/2 + ... + x^100/100`, then f'(1) is equal to ______.
If `f(x) = 1 - x + x^2 - x^3 + ... -x^99 + x^100`, then f'(1) is equal to ______.
If `y = 1 + x/(1!) + x^2/(2!) + x^3/(3!) + ...,` then `(dy)/(dx)` = ______.