मराठी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (x + sec x) (x – tan x) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + sec x) (x – tan x)

बेरीज

उत्तर

Let f(x) = (x + sec x) (x  tan x)

By product rule,

f'(x) = `(x + sec x) d/dx (x - tan x) + (x - tan x) d/dx (x + sec x)`

= `(x + sec x) [dx/d (x) d/dx tanx] + (x − tan x) [d/dx (x) + d/dx sec x]`

= `(x + secx) [1– d/dx tan x] + (x - tan x) [1 + d/dx sec x]`     ...(i)

Let f1 (x) = tan x, f2(x) = sec x

Accordingly, f1(x + h) = tan (x + h) and f2(x + h) = sec (x + h)

f'(x) = `lim_(h->0) ((f_1(x + h) - f_1(x))/(h))`

= `lim_(h->0) ((tan(x + h) - tan x)/(h))`

= `lim_(h->0) [(tan(x + h) - tan x)/(h)]`

= `lim_(h->0) [sin (x + h)/cos (x + h) - sin x/cos x]`

= `lim_(h->0) 1/h [(sin (x + h) cos x - sin x cos (x + h))/(cos (x + h) cos x)]`

= `lim_(h->0) 1/h [sin (x + h - x)/(cos (x + h) cos x)]`

= `lim_(h->0) 1/h [sin h/(cos (x + h) cos x)]`

= `(lim_(h->0) (sin h)/h). (lim_(h->0) 1/(cos (x + h) cos x))`

= `1 xx 1/cos^2 x = sec^2 x`

= `d/dx tan x = sec^2 x`     ...(ii)

f'2(x) = `lim_(h->0) ((f_2(x + h) - f_2(x))/(h))`

= `lim_(h->0) ((sec(x + h) - sec x)/(h))`

= `lim_(h->0) 1/h [1/(cos (x + h)) - 1/(cos x)]`

= `lim_(h->0) 1/h [(cos x - cos (x + h))/(cos (x + h) cos x)]`

= `1/(cos x). lim_(h->0)1/h [(-2 sin  ((x + x + h)/2). sin  ((x - x - h)/2))/(cos (x + h))]`

= `1/(cos x). lim_(h->0)1/h [(-2 sin ((2x + h)/2). sin  (- h)/2)/(cos (x + h))]`

= `1/(cos x). lim_(h->0) [(sin  ((2x + h)/2) {(sin (h/2))/(h/2)})/(cos (x + h))]`

= `sec x. (lim_(h->0)sin((2x + h)/2) {lim_(h->0) sin(h/2)/(h/2)})/(lim_(h->0) cos (x + h))`

= `sec x. (sin x.1)/(cos x)`

`=> d/dx sec x = sec x tan x`   ... (iii)

From (i), (ii), and (iii), we obtain

f'(x) = (x + sec x)(1 − sec2 x) + (x − tan x) (1 + sec x tan x)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Miscellaneous Exercise | Q 29 | पृष्ठ ३१८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `x^n  + ax^(n-1) + a^2 x^(n-2) + ...+ a^(n -1) x + a^n` for some fixed real number a.


For some constants a and b, find the derivative of (ax2 + b)2.


For some constants a and b, find the derivative of `(x - a)/(x - b)`.


Find the derivative of the following function:

5 sec x + 4 cos x


Find the derivative of the following function:

cosec x


Find the derivative of the following function:

5sin x – 6cos x + 7


Find the derivative of the following function:

2tan x – 7sec x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x2 + 1) cos x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(4x + 5sin x)/(3x + 7cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(x^2 cos (pi/4))/sin x`


Find the derivative of f(x) = ax + b, where a and b are non-zero constants, by first principle


Find the derivative of f(x) = ax2 + bx + c, where a, b and c are none-zero constant, by first principle.


Find the derivative of f(x) = x3, by first principle.


Find the derivative of f(x) = `1/x` by first principle.


Find the derivative of f(x) = sin x, by first principle.


Find the derivative of `cosx/(1 + sinx)`


`(x^4 + x^3 + x^2 + 1)/x`


`(3x + 4)/(5x^2 - 7x + 9)`


`(x^5 - cosx)/sinx`


(sin x + cos x)2


x2 sin x + cos 2x


sin3x cos3x


If `y = sqrt(x) + 1/sqrt(x)`, then`(dy)/(dx)` at x = 1 is  ______.


if `f(x) = (x - 4)/(2sqrt(x))`, then f'(1) is ______.


If `y = (sin x + cos x)/(sin x - cos x)`, then `(dy)/(dx)` at x = 0 is ______.


If `f(x) = 1 + x + x^2/2 + ... + x^100/100`, then f'(1) is equal to ______.


If `y = 1 + x/(1!) + x^2/(2!) + x^3/(3!) + ...,` then `(dy)/(dx)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×