Advertisements
Advertisements
प्रश्न
Find the elasticity of supply when the supply function is given by x = 2p2 + 5 at p = 1.
उत्तर
Given x = 2p2 + 5
Differentiating with respect to 'p' we get,
`"dx"/"dp"` = 4p
Elasticity of Supply
`eta_s = "p"/x * "dx"/"dp"`
`=> eta_s = "p"/(2"p"^2 + 5)`(4p)
`= (4"p"^2)/(2"p"^2 + 5)`
when p = 1, `eta_s = (4(1)^2)/(2(1^2) + 5) = 4/(2 + 5) = 4/7`
APPEARS IN
संबंधित प्रश्न
If the demand law is given by p = `10e^(- x/2)` then find the elasticity of demand.
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = (a – bx)2
The supply function of certain goods is given by x = a`sqrt("p" - "b")` where p is unit price, a and b are constants with p > b. Find elasticity of supply at p = 2b.
Find the values of x, when the marginal function of y = x3 + 10x2 – 48x + 8 is twice the x.
The demand and cost functions of a firm are x = 6000 – 30p and C = 72000 + 60x respectively. Find the level of output and price at which the profit is maximum.
The total cost function for the production of x units of an item is given by C = 10 - 4x3 + 3x4 find the
- average cost function
- marginal cost function
- marginal average cost function.
Find out the indicated elasticity for the following function:
p = `10 e^(- x/3)`, x > 0; ηs
Marginal revenue of the demand function p = 20 – 3x is:
Instantaneous rate of change of y = 2x2 + 5x with respect to x at x = 2 is:
A company begins to earn profit at: