Advertisements
Advertisements
प्रश्न
If the demand law is given by p = `10e^(- x/2)` then find the elasticity of demand.
उत्तर
p = `10e^(- x/2)`
Elasticity of demand: ηd = `- p/x * "dx"/"dp"`
p = `10e^(- x/2)`
`"dp"/"dx" = 10(e^(-x/2))(- 1/2)`
`= - 10/2 e^(-x/2)`
`= - 5e^(-x/2)`
Elasticity of demand: ηd = `- p/x * 1/("dp"/"dx")`
`= ((- 10e^(-x/2))/x)(1/(- 5e^(-x/2)))`
`= (-10)/(-5x) xx e^(-x/2)/e^(-x/2)`
ηd = `2/x`
APPEARS IN
संबंधित प्रश्न
Revenue function ‘R’ and cost function ‘C’ are R = 14x – x2 and C = x(x2 – 2). Find the
- average cost
- marginal cost
- average revenue and
- marginal revenue.
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = a – bx2
For the demand function p = 550 – 3x – 6x2 where x is quantity demand and p is unit price. Show that MR =
The total cost function y for x units is given by y = 3x`((x+7)/(x+5)) + 5`. Show that the marginal cost decreases continuously as the output increases.
The demand and cost functions of a firm are x = 6000 – 30p and C = 72000 + 60x respectively. Find the level of output and price at which the profit is maximum.
Find out the indicated elasticity for the following function:
p = xex, x > 0; ηs
Find out the indicated elasticity for the following function:
p = `10 e^(- x/3)`, x > 0; ηs
Find the elasticity of supply when the supply function is given by x = 2p2 + 5 at p = 1.
If demand and the cost function of a firm are p = 2 – x and C = -2x2 + 2x + 7 then its profit function is:
If the average revenue of a certain firm is ₹ 50 and its elasticity of demand is 2, then their marginal revenue is: