Advertisements
Advertisements
प्रश्न
For the demand function p = 550 – 3x – 6x2 where x is quantity demand and p is unit price. Show that MR =
उत्तर
Given p = 550 – 3x – 6x2
Revenue, R = px = (550 – 3x – 6x2)x = 550x – 3x2 – 6x3
Marginal Revenue (MR) = `"d"/"dx"`(R)
`= "d"/"dx"` (550x – 3x2 – 6x3)
= 550 – 6x- 18x2
Now ηd = `- "p"/x * "dx"/"dp"`
p = 550 – 3x – 6x2
`"dp"/"dx"` = 0 - 3 - 12x
∴ ηd = `- "p"/x * 1/("dp"/"dx")`
`= - [(550 - 3x - 6x^2)/x] xx 1/((- 3 - 12x))`
`= (550 - 3x - 6x^2)/(-x) xx 1/((- 3 - 12x))`
`= (550 - 3x - 6x^2)/(3x + 12x^2)`
`therefore 1 - 1/eta_"d" = 1 - 1/(((550 - 3x - 6x^2)/(3x + 12x^2)))`
`= 1 - (3x + 12x^2)/(550 - 3x - 6x^2)`
`= (550 - 3x - 6x^2 - 3x - 12x^2)/(550 - 3x - 6x^2)`
`= (550 - 6x - 18x^2)/(550 - 3x - 6x^2)`
`therefore "p"[1 - 1/eta_"d"] = (((550 - 3x - 6x^2)(550 - 6x - 18x^2))/(550 - 3x - 6x^2))`
`= 550 - 6x - 18x^2` = MR
APPEARS IN
संबंधित प्रश्न
A firm produces x tonnes of output at a total cost of C(x) = `1/10x^3 - 4x^2 - 20x + 7` find the
- average cost
- average variable cost
- average fixed cost
- marginal cost and
- marginal average cost.
The supply function of certain goods is given by x = a`sqrt("p" - "b")` where p is unit price, a and b are constants with p > b. Find elasticity of supply at p = 2b.
For the demand function x = `25/"p"^4`, 1 ≤ p ≤ 5, determine the elasticity of demand.
The demand function of a commodity is p = `200 - x/100` and its cost is C = 40x + 120 where p is a unit price in rupees and x is the number of units produced and sold. Determine
- profit function
- average profit at an output of 10 units
- marginal profit at an output of 10 units and
- marginal average profit at an output of 10 units.
Average fixed cost of the cost function C(x) = 2x3 + 5x2 – 14x + 21 is:
Marginal revenue of the demand function p = 20 – 3x is:
Relationship among MR, AR and ηd is:
For the cost function C = `1/25 e^(5x)`, the marginal cost is:
If the average revenue of a certain firm is ₹ 50 and its elasticity of demand is 2, then their marginal revenue is:
The demand function is always