Advertisements
Advertisements
प्रश्न
Relationship among MR, AR and ηd is:
विकल्प
`eta_"d" = "AR"/("AR" - "MR")`
ηd = AR – MR
MR = AR = ηd
AR = `"MR"/eta_"d"`
उत्तर
`eta_"d" = "AR"/("AR" - "MR")`
APPEARS IN
संबंधित प्रश्न
Revenue function ‘R’ and cost function ‘C’ are R = 14x – x2 and C = x(x2 – 2). Find the
- average cost
- marginal cost
- average revenue and
- marginal revenue.
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = a – bx2
The supply function of certain goods is given by x = a`sqrt("p" - "b")` where p is unit price, a and b are constants with p > b. Find elasticity of supply at p = 2b.
For the demand function p = 550 – 3x – 6x2 where x is quantity demand and p is unit price. Show that MR =
Find the values of x, when the marginal function of y = x3 + 10x2 – 48x + 8 is twice the x.
The demand function of a commodity is p = `200 - x/100` and its cost is C = 40x + 120 where p is a unit price in rupees and x is the number of units produced and sold. Determine
- profit function
- average profit at an output of 10 units
- marginal profit at an output of 10 units and
- marginal average profit at an output of 10 units.
The total cost function for the production of x units of an item is given by C = 10 - 4x3 + 3x4 find the
- average cost function
- marginal cost function
- marginal average cost function.
Find out the indicated elasticity for the following function:
p = `10 e^(- x/3)`, x > 0; ηs
If demand and the cost function of a firm are p = 2 – x and C = -2x2 + 2x + 7 then its profit function is:
The demand function is always