Advertisements
Advertisements
Question
Relationship among MR, AR and ηd is:
Options
`eta_"d" = "AR"/("AR" - "MR")`
ηd = AR – MR
MR = AR = ηd
AR = `"MR"/eta_"d"`
Solution
`eta_"d" = "AR"/("AR" - "MR")`
APPEARS IN
RELATED QUESTIONS
The total cost of x units of output of a firm is given by C = `2/3x + 35/2`. Find the
- cost when output is 4 units
- average cost when output is 10 units
- marginal cost when output is 3 units
The supply function of certain goods is given by x = a`sqrt("p" - "b")` where p is unit price, a and b are constants with p > b. Find elasticity of supply at p = 2b.
Show that MR = p`[1 - 1/eta_"d"]` for the demand function p = 400 – 2x – 3x2 where p is unit price and x is quantity demand.
For the demand function x = `25/"p"^4`, 1 ≤ p ≤ 5, determine the elasticity of demand.
The demand function of a commodity is p = `200 - x/100` and its cost is C = 40x + 120 where p is a unit price in rupees and x is the number of units produced and sold. Determine
- profit function
- average profit at an output of 10 units
- marginal profit at an output of 10 units and
- marginal average profit at an output of 10 units.
The total cost function y for x units is given by y = 3x`((x+7)/(x+5)) + 5`. Show that the marginal cost decreases continuously as the output increases.
The cost function of a firm is C = x3 – 12x2 + 48x. Find the level of output (x > 0) at which average cost is minimum.
The total cost function for the production of x units of an item is given by C = 10 - 4x3 + 3x4 find the
- average cost function
- marginal cost function
- marginal average cost function.
Average fixed cost of the cost function C(x) = 2x3 + 5x2 – 14x + 21 is:
For the cost function C = `1/25 e^(5x)`, the marginal cost is: