Advertisements
Advertisements
Question
For the demand function x = `25/"p"^4`, 1 ≤ p ≤ 5, determine the elasticity of demand.
Solution
The demand function, x = `25/"p"^4`, 1 ≤ p ≤ 5
The elasticity demand, ηd = `- "p"/x * "dx"/"dp"`
x = `25/"p"^4`
x = 25 × p-4
`"dx"/"dp" = (25)(-4)"p"^(-4-1)`
`= 25 xx -4 xx "p"^(-5)`
`= 25 xx (-4)xx1/"p"^5`
Hint for differentiation
`"d"/"dx"(1/"x"^"n") = "-n"/("x"^("n + 1"))`
x = `25/"p"^4`
`"dx"/"dp" = 25((-4)/"p"^5)`
∴ ηd = `- "p"/x * "dx"/"dp"`
`= (-"p")/(25/"p"^4) xx 25 xx (-4)xx1/"p"^5`
`= (-"p"^5)/25 xx 25 xx (-4) xx 1/"p"^5` = 4
APPEARS IN
RELATED QUESTIONS
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = a – bx2
Find out the indicated elasticity for the following function:
p = xex, x > 0; ηs
Find out the indicated elasticity for the following function:
p = `10 e^(- x/3)`, x > 0; ηs
Find the elasticity of supply when the supply function is given by x = 2p2 + 5 at p = 1.
For the demand function p x = 100 - 6x2, find the marginal revenue and also show that MR = p`[1 - 1/eta_"d"]`
Average fixed cost of the cost function C(x) = 2x3 + 5x2 – 14x + 21 is:
If demand and the cost function of a firm are p = 2 – x and C = -2x2 + 2x + 7 then its profit function is:
Instantaneous rate of change of y = 2x2 + 5x with respect to x at x = 2 is:
If the average revenue of a certain firm is ₹ 50 and its elasticity of demand is 2, then their marginal revenue is:
The demand function is always